This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3277969

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

1

Efficiently Supporting Multi-Level Serializability
in Decentralized Database Systems

Zhanhao Zhao, Hongyao Zhao, Qiyu Zhuang, Wei Lu, Haixiang Li, Meihui Zhang,
Anqgun Pan, Xiaoyong Du

Abstract—In decentralized database systems, it is reported that serializability could still produce unexpected transaction orderings,
leading to the stale read anomaly. To eliminate this anomaly, strict serializability imposes an additional ordering constraint, called the
real-time order, which is required to be preserved among serializable transactions. Yet, preserving the real-time order in strict
serializability often causes the performance to drop significantly. Because a weaker data consistency often yields better performance, in
this paper, we model serializability from different consistency perspectives to properly leverage the performance and consistency. To do
this, we first define a group of orderings, based on which we formulate multi-level serializability by preserving a certain set of ordering
constraints among transactions. We then propose a bidirectional timestamp adjustment algorithm (abbreviated as BDTA) to support
multi-level serializability with various optimizations. Our special design makes ordering constraints among transactions be preserved
simply by adjusting timestamp intervals. Finally, we conduct extensive experiments to show the necessity of introducing multi-level
serializability and confirm that BDTA achieves up to 1.19x better performance than the state-of-the-art concurrency control algorithms.

Index Terms—Database, Transactions, Serializability, Concurrency Control

1 INTRODUCTION

ECENTRALIZED database systems [37] like Google

Spanner [14], CockroachDB [44], and TiDB [25] have
become increasingly popular to support large-scale web ap-
plications. In these systems, each coordinator individually
coordinates transactions, each of which reads/writes data
from a snapshot using a given timestamp. Due to inconsis-
tent local clocks across coordinators, recent studies [16], [40]
show serializability still produces unexpected transaction
orderings that make transactions read stale data.

Example 1. Consider a user who deposits money via
ATM by submitting transaction 7. To confirm the deposit,
the user subsequently checks the account balance x via an
online banking service by T5. Because 15 starts after T}
is accomplished, the user expects to observe the balance
x written by T7. However, as shown in Fig. 1, T}’s write
cannot be “seen” by Ty, leading to a stale read Ra(z¢) of Tb.
The reason is that different coordinators execute 77 and 75
with inconsistent local clocks, i.e., the snapshot (2:01 PM) of
T, is earlier than the commit timestamp (2:02 PM) of T;. O

The real-time order is first introduced in the lineariz-
ability consistency level [7], meaning that if one operation
op; starts after another operation ops is accomplished, then
op1’s read must observe ops” write. Strict serializability [10],
[24], [40] imposes the real-time order on serializability by ex-

e Zhanhao Zhao, Hongyao Zhao, Qiyu Zhuang, Wei Lu, and Xiaoyong Du
are with the Key Laboratory of Data Engineering and Knowledge Engi-
neering, Ministry of Education, China, and School of Information, Ren-
min University of China, Beijing 100872, China. E-mail: {zhanhaozhao,
hongyaozhao, qyzhuang, lu-wei, duyong }@ruc.edu.cn.

e Huixiang Li and Anqun Pan are with Tencent Inc., Shenzhen 518054,
China. E-mail: {blueseali, aaronpan}@tencent.com.

o Meihui Zhang is with Beijing Institute of Technology, Beijing 100081,
China. E-mail: meihui_zhang@bit.edu.cn.

Coordinator N,

T1@2:02 PM < __
i W (x | ~. Inconsistent
i 1(;1) i I\ local clock
[. [N
I T Te@2:01PM
o | DR
£ 6
l

Fig. 1: The execution is serializable. However, due to two
coordinators” inconsistent local clocks, a stale read anomaly
Ry (z0) occurs in Th: reading stale data xo, highlighted in
red. Symbol W;(xz;) represents a write by T; on version z;
of data item x, R;(x;) signifies a read by T; on version ;
written by transaction 7}, and C; denotes the commit of T;.

tending the operation granularity to transaction granularity.
Hence, it eliminates the stale read anomaly in serializable
transactions, making 75 observe T%" write, i.e., read z, in
Example 1. Thus far, preserving the real-time order can
only be implemented by either (1) timestamp oracle [38]
or (2) TrueTime [14]. When using timestamp oracle, each
transaction is assigned with globally ordered timestamps,
and hence every two transactions are comparable. For this
method, however, obtaining the timestamps suffers from
high network latency overhead and could become a bot-
tleneck [8], [50]. TrueTime requires customized hardware
like atomic clocks to avoid using the timestamp oracle but
incurs expensive blocking overhead (i.e., commit-wait) to
preserve the real-time order. For example, in the commit-
wait scheme, transactions would wait for 4ms to commit,
leading to significant performance degradation.

Often, weaker consistency yields better performance.
Although strict serializability is taken as the strongest con-
sistency level, it is not often supported in decentralized
databases because of its poor performance. In practice, for
better performance, a few newly-found consistency levels,

Authorized licensed use limited to: Renmin University. Downloaded on July 09,2023 at 07:19:25 UTC from IEEE Xplore. Restrictions apply.

© 2023 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3277969

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

with degrees weaker than strict serializability but stronger
than serializability, are proposed. For example, strong ses-
sion serializability [16] integrates session consistency with
serializability, while Lynx [56] imposes read-your-writes
consistency on serializability. However, these consistency
levels are reported on a case-by-case basis, and hence,
they cannot make the trade-off between consistency and
performance to meet users’ requirements. In this paper, we
study the consistency over serializability and above, and
achieve this trade-off by providing a systematic definition
of consistency levels over serializability. We exclude weaker
consistency levels, like snapshot isolation [33], [42], from
our scope, because users often assume serializability is

implicitly guaranteed [6], [20].

Inspired by different consistency models (popularized
by linearizability, sequential consistency [28], causal consis-
tency [27], etc.), we first define a group of orderings among
transactions, including the write-read order, program order,
causal-related order, real-time order, and write-legal order.
We then model multi-level serializability to systematically
formulate consistency: (1) serializability, (2) sequential seri-
alizability, and (3) strict serializability, by preserving these
orders. For instance, sequential serializability is formulated
by preserving the causal-related order and write-legal order.
Besides providing systematic modeling, our ordering-based
formulation of multi-level serializability is self-explanatory.
Informally, given a transaction’s write, serializability does
not ensure it is always “seen” by late transactions; sequential
serializability guarantees that it is always “seen” by some
late transactions (e.g., subsequent transactions in the same
session, ensured by the causal-related order), and strict
serializability guarantees that it is always “seen” by all late
transactions (ensured by the real-time order).

We then propose a novel concurrency control algorithm
called bidirectional timestamp adjustment (abbreviated
as BDTA). Inspired by dynamic timestamp adjustment
(DTA) [31], [54], [55], BDTA introduces a timestamp interval
[LB, U B| for each transaction T'. For every two transactions
T;,T; with an ordering constraint (e.g., T; — T}), we
guarantee that their timestamp intervals are disjoint, i.e.,
T;.UB < T;.LB. Any transaction violating the required or-
dering constraint cannot produce a legal timestamp interval
and aborts. We regulate the timestamp allocation scheme in
BDTA to support multi-level serializability. In particular, we
use the timestamp oracle to preserve the real-time order,
and the hybrid logical clock [17] to preserve the causal-
related order. Compared with existing DTA schemes, the
differences of BDTA are two-fold: on one hand, BDTA ad-
justs timestamp intervals by preserving ordering constraints
required in multi-level serializability; on the other hand,
BDTA optimizes the size of the timestamp interval for each
adjustment, leading to a lower transaction abort rate.

In summary, we make the following contributions:

e We systematically formulate multi-level serializability
from different consistency perspectives. We define a group
of orderings among transactions and use these orders to
achieve a unified formulation.

o We design a concurrency control algorithm, called BDTA,
to support multi-level serializability. We propose a heuris-
tic method to adaptively determine the size of the times-
tamp interval for each adjustment, which helps reduce

2

the abort rate. Our special design makes read-only trans-
actions always commit.

e We conduct extensive experiments to show the necessity
of multi-level serializability. Additionally, we integrate
BDTA and state-of-the-art concurrency control algorithms
into Deneva [22], and results show BDTA achieve up to
1.19x performance gain. We also integrate BDTA into
Greenplum [21] and release our implementation publicly.

2 BACKGROUND

In this section, we briefly introduce the system architecture
of decentralized databases and discuss the state-of-the-art
timestamp allocation schemes.

2.1 Decentralized Database Systems

Decentralized database systems are particularly designed
to support scalable transaction processing. Typically, the
system architecture of transaction processing can be de-
composed into two layers: the coordination layer and the
storage layer. The first layer contains multiple coordinators,
in which each process coordinates incoming transactions
and returns results to users. The second layer consists of
participant servers, each responsible for storing and ma-
nipulating data items. Data items are spread across all
participant servers and are partitioned by a specific strategy
like hash partitioning. Each transaction is coordinated by a
single process in the coordinator. The process decomposes a
transaction into one or multiple local transactions, which are
then distributed to the corresponding participant server(s)
that is/are responsible for managing the data items to be
read /written. These systems always maintain multiple ver-
sions of each data item and adopt multi-version concurrency
control (MVCC) to enable a transaction to read appropriate
versions based on its snapshot.

Most decentralized database systems achieve high avail-
ability and fault tolerance using data replication, im-
plemented using consensus protocols like Paxos [29] or
Raft [36]. In this case, each partition has multiple replicas,
which construct a Paxos/Raft group with one replica chosen
as the leader replica. Because data synchronization among
the replicas based on Paxos/Raft is orthogonal to this paper,
to simplify the discussion, we assume coordinators always
send local transactions to the leader replica of the corre-
sponding partition with the required data items.

2.2 Timestamp Allocation Schemes

In MVCC-based decentralized databases, each transaction
should acquire a unique timestamp and use such a times-
tamp to determine the corresponding consistent snapshot.
Some systems [38] use the timestamp oracle to allocate
globally ordered timestamps. Under such a scheme, each
transaction would communicate with the centralized times-
tamp oracle through the network, which is costly and poten-
tially becomes a performance bottleneck. Recently proposed
systems [44] rely on the hybrid logical clock (HLC) [17]
scheme to achieve consistent snapshot reads. Unlike central-
ized timestamp oracle, HLC allows each process to allocate
timestamps individually, i.e., acquire timestamps in a decen-
tralized manner. Each timestamp allocated by HLC consists
of two parts: (1) physical clock pts [32], which maintains
the local timestamp of that process, and (2) Lamport clock
lts [27], which traces orders among operations through dif-
ferent processes. These systems assign an HLC timestamp

Authorized licensed use limited to: Renmin University. Downloaded on July 09,2023 at 07:19:25 UTC from IEEE Xplore. Restrictions apply.

© 2023 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3277969

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
TABLE 1: Symbols and their meanings

Symbol Definition
P; i-th process in the coordinator
H; i-th transaction history
Si i-th transactionally sequential history
T; = T a partial order between T; and T}
T i-th transaction is a sequence of operations, which are either
‘ read R;(x;), write W;(x;), commit C; or abort A;
s the local transaction of T; in the participant s
T;.LB/UB | the lower bound/upper bound of T;’s timestamp interval
T7.sl the spinlock of T;
T;.rs/ws the read set/write set of T;
T;.s5 the snapshot of T;
T;.c the commit timestamp of 7T
T a data item, associated with four fields:
x.pk the primary key of
z.RTS the maximum T;.c of the transactions that have read x
. WT the transaction that is currently modifying x
x.RIDs a list recording non-committed transactions that read «
T; i-th version of the data item z
xz;.cts T;.c of the transaction that writes x;
the timestamp interval space for the adjustment between
i T; and T}

to each transaction and update HLC upon an operation,
i.e., each operation in a transaction will trigger the update
of HLC in that process. Consequently, for the applications
where each transaction has a large number of reads/writes,
frequently updating HLC may hurt the performance. To
alleviate this problem, we propose a strategy to update HLC
once per transaction instead of once per operation (with
more details in Section 4.3).

3 MULTI-LEVEL SERIALIZABILITY MODELING

In this section, we define ordering among transactions,
and systematically formulate multi-level serializability from
different consistency perspectives. Table 1 summarizes the
notations used throughout the paper.

Each transaction, denoted by T, is a sequence of oper-
ations, that are either read R;(x;), write W;(z;), commit
C; or abort A;. Without loss of generality, we assume each
transaction is separately coordinated by a single process in
the coordinator. Each operation, denoted by op, consists
of an invocation event Inv(op, P) and a response event
Res(op, P), where P represents a process in the coordinator.
For simplicity, we omit process P or data item x; when the
context is clear, e.g., Inv(Rz(xo), P2) can be simplified by
Inv(Rz(xo)).

Following widely adopted terminology defined in [1],
[24], we denote an execution of a set of transactions as a
history. A history, denoted by H, is a finite sequence of
events in transactions. For example, we present history H;
in Fig. 2 that corresponds to the execution of transactions in
Fig. 1. We project a history to the data item level, transaction
level, and process level:

o A data item projection, H|z, of a history H is the sub-
sequence of all invocation and response events in H of
operations executed on data item z.

e A transaction projection, H|T, of a history H is the subse-
quence of all events in I whose operations are from 7.

o A process projection, H|P, of a history H is the subsequence
of all events in H coordinating by P.

Definition 1. (Equivalent Histories) Two histories H and
H' are equivalent if VP, H|P = H'|P. O

For example, history .S; shown in Fig. 3 is equivalent to
H, by swapping the order 7} and 75 located in P; and P

History H; Inv(We) Res(Wo) Inv(Co) Res(Co)|Inv(W+) Res(W1) Inv(C1) Res(C:)| Inv(R) Res(Rz)Inv(Cz)Res(Cz)

» [» 3 »
tWokg b 1 Co P twix)) ot At
Process P14\}:}"—ET—*}:[U i L T
(Coordinator N1) -« To—> -« Ty —> \ . |
\ [|

\ \

Ra(Xo) !
Process P,
(Coordinator N2) Time —

Fig. 2: A history H; corresponds to Fig. 1.

History S1 Inv(Wo) Res(Wo) Inv(Co) Res(Cu)‘ InV(Rz)Res(Rz)Inv(Cz)Res(Cz)‘lnv(\Nw) Res(W1) Inv(C1) Res(C1)

4 4 4 v N
5 o tWoe) bt cy b ! Vbt twegd to !
rocess 1? - T — ' e
(Coordinator N1) <«—To > | R (X) ! ! c ' T_r T 1 r—
V2ol e
Process P, —

(Coordinator N2) Time —

Fig. 3: An equivalent history S; to H;.

respectively, from the global clock perspective. A transaction
T; is said to be well-formed in H if its transaction projection
H|T; satisfies the following conditions: (1) the first event is
an invocation; (2) each invocation, except the last, is imme-
diately followed by the response of the same operation; (3)
each response, except the last, is immediately followed by
an invocation; (4) no events follow the response of C; or A;.
In this paper, we assume that in a history, transactions are
well-formed and finally commit. Besides, we assume each
process P coordinates transaction sequentially, i.e., P only
starts the first event of one transaction after receiving the
response of commit or abort of another transaction.
3.1 Ordering Definitions
Given a history H, and two operations op;, ops of H, we
define four partial orders between op; and opa:
Definition 2 (Program Order, <7}). op1 <% ops if they are
in the same P and Res(op1, P) precedes Inv(ops, P). O
Definition 3 (Write-Read Order, <%"). op1 <% op2 if opa
reads a version written by op;. O
Definition 4 (Causal-related Order, <%). op1 <% ops if (a)
op1 <% ops or (b) op1 <% ops, or they are related by a
transitive closure leveraging (a) and/or (b). O
Definition 5 (Real-time Order, <%). opy <% opy if
Res(op1, P;) precedes Inv(opa, P;), where op1, ops are from
P;, P;, respectively. O
Partial orders given in Definition 2-5 are defined in
operation granularity. They are widely used in the concur-
rent system to model linearizability, sequential consistency,
causal consistency, etc. In our case, we make an extension
from operation granularity to transaction granularity.
Given two transactions 7; and 7} in H, we define four
partial orders between T; and T}:

o T; -<§{r T}, if T; and T} are in the same process P and the
last event of T; precedes the first event of T}.

o T; <Y Tj, if there exists an operation op; in T; and
another operation op; in T} such that op; <%" opa.

o T, <5 Ty, if (a) T; <Y Tj or (b) T; <%" T}, or they are
related by a transitive closure leveraging (a) and/or (b).

o T, <% T;,if T)'s last event precedes the first event of 7.

Definition 6 ((Transactionally) Sequential History). A his-
tory S is (transactionally) sequential if, for any two transac-
tions 7; and 7 in S, either the last event of S|T; precedes
the first event of S|T} or the last event of S|T; precedes the
first event of S|T;. We denote the order between T; and T}
by T; — T if T; precedes Tj in S. O

For brevity, we refer to transactionally sequential history
as sequential history unless otherwise specified.

Authorized licensed use limited to: Renmin University. Downloaded on July 09,2023 at 07:19:25 UTC from IEEE Xplore. Restrictions apply.

© 2023 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3277969

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

R1(xg) W4(x4) C;
Process Py
(Coordinator N1)

Ralyo) G,
Ti—> |+ T2
R. W. C R,(x) C
Process P, a(Yo) Walys) Cg 4(x0) C4
(Coordinator N2) Time —»> T3 —» < T4 —>
(a) Serializable but not sequentially serializable

R;(xgW1(X)) C; Ralyd ©C,
Process P14Lé{:£ﬁ:1—57
(Coordinator N1) Ti -T2
C,

Ri(xo) C R W.
Process P, 4Xg 4 a(Yo) Walys)
(Coordinator N2) | <— T4 —C’ (b) History 82 E Ts é

Fig. 4: A history Hy and a sequential history Ss.

History H,

Definition 7 (Write-legal Order). A sequential history pre-
serves the write-legal order if for Va, Inv(R;(z;), Py) in
S|z immediately comes after Res(W;(z;), P;) by removing
events of other read operations in S|z, i.e., roughly, reads of
x; immediately come after the write of x; in S|x. O
For example, S; shown in Fig. 3 is a sequential history,
with T —<’;IT Th, To =% T>. Besides, S preserves the write-
legal order because Inv(Rz(z¢)) immediately comes after
Res(Wy(zp)) in S|z, indicating the order of Sy is Ty —
T, — T). However, H; does not preserve the write-legal
order since Inv(Rz(zo)) does not immediately come after
Res(Wy(zo)) in Hyz.
3.2 Multi-level Serializability
By selectively imposing orders on sequential history, we
model multi-level serializability below. Given two histories
H and S5, < C=<9 means that VT;,T}, if T; <% Tj, then
T; <G T} (this is also applicable to other orders).
Definition 8 (Multi-level Serializability).

o Serializability. A history [ensures serializability if there
is a sequential history S, which preserves the write-legal
order, with VT', Sy |T' = H|T and <% C<47.

o Sequential Serializability. I guarantees sequential seri-
alizability if H is equivalent to a sequential history S,
which preserves the write-legal order, with <77 C<g’ .

o Strict Serializability. I ensures strict serializability if H
is equivalent to a sequential history Sy, which preserves
the write-legal order, with < C<¢ and <3 C<Y, . O

Informally, the execution of H is said to satisfy (1) serial-
izability when there exists a sequential history Sy preserv-
ing the write-read order and write-legal order, (2) sequential
serializability when an equivalent sequential history Sy
to H preserves the causal-related order and write-legal
order, (3) strict serializability when an equivalent sequential
history Sy to H preserves the real-time order, causal-related
order, and write-legal order. Take H;, shown in Fig. 2, for

example. H; satisfies sequential serializability because H;

is equivalent to S; shown in Fig. 3, which is a sequential

history preserving the write-legal order, with <% C<g . As-
sume T» reads x; instead of xg in Hy,i.e., Ro(x1), H; would
satisfy strict serializability. On the contrary, consider history

Hy shown in Fig. 4(a). H2 does not preserve the write-

legal order. We can find a sequential history S (shown

in Fig. 4(b)) to H», which preserve the write legal order,
with VI' € Hy, Ho|T = So|T and <, C <4’ . Thus,

H, is serializable but not sequentially serializable because

T3 <%, Ty is not preserved in Sy.

In essence, we model multi-level serializability by com-
bining serializability with the consistency model, including
linearizability and sequential consistency. In the following,

4
P History Hy RaXg) Raly)) C, Ralx) C
! «—— To—> |« T4 éi
P Ri(xp) W4(x1) &
2 T1 %ﬂ
Rs(xg) Rs(yo) Walya) Cq
Ps
jum
) T = T [T -1]
Write-Legal Order T, T
Program Order
Write-Read Order
" Steps to construct a sequential history Sq for Hy
T+ Commits

T2 Commits
TeCommits [T2 [T+ [T4 |
TsCommits [T2 [Ts [T+ [T4 |

Fig. 5: An example of dynamic ordering using BDTA.

we theoretically show that the combination of serializability
with causal consistency and consistency below it can be
reduced to sequential serializability.

Theorem 1. Imposing causal consistency and consistency below
it on serializability can be reduced to sequential serializability.

Proof. As mentioned in [34], causal consistency and weaker
consistency levels, like read-your-write consistency, cannot
preserve a total order of operations, leading to different
processes observing conflict orders, e.g., T; — T} observed
from the process P, and T; — T; observed from P>.
Since serializability imposes a total order of transactions,
imposing causal consistency or weaker consistency levels
on serializability is reduced to sequential serializability. [

4 CONCURRENCY CONTROL ALGORITHM

In this section, we give an overview of BDTA to sup-
port multi-level serializability and elaborate on how BDTA
works correctly in decentralized MVCC-based databases.

4.1 An Overview of BDTA

The basic idea of BDTA is to preserve required orders
defined in multi-level serializability during the transaction
execution. To start, we give an example to show how BDTA
preserves required orders under serializability.

Example 2. Consider history H3 shown on the top part
of Fig. 5. For reference, we list all orders required in serializ-
ability. We present how to construct S3 during the execution,
where S5 is a sequential history that preserves the write-
legal order of H3, with VT, S3|T" = H3|T and <p C<4¢’.
From the global clock perspective, T; first commits, and
we set 1] as the first transaction in S3. 75 then commits.
Theoretically, 75 can be ordered before T or after 1% in
S3. BDTA orders 15 before 1) by detecting the write-legal
order T, — T4. Next, T, commits and is ordered after T}
in S3 because of the write-read order 77 — T}. Finally,
T3 commits. Due to the write-legal orders 73 — 1% and
T5 — T3, T3 can only be ordered between 75 and 77 in Ss.
In conclusion, S5 is shown at the bottom part of Fig. 5, with
the order as Ty — T3 — T — T}. O

Different from other concurrency control algorithms, like
T/O, or 2PL, that order transactions statically (e.g., T/O
orders transactions based on their start timestamps), BDTA
orders transactions dynamically, and hence possibly leads to

Authorized licensed use limited to: Renmin University. Downloaded on July 09,2023 at 07:19:25 UTC from IEEE Xplore. Restrictions apply.

© 2023 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3277969

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

Time Ts Time T1 Time Tz Time Ta Time Ta Time Ts
starts commits commits starts commits commits
l l | | | | >
I T I T T T T T T — 1>
B | | | | |
1 1 1 1 1
1 1 1 1 1
LB)(LB), LB)(LB], |_BI LBI LBI
| T2 || Ta |1 Ts |1 i Ta|I Ta |1
T P (V=) (1 B usJ,| usJ| ug), (T
{1e ® e 0.
g (] (] {553 o G
k7] | | | | |
g 1 1 1 1 1
£] us)\us)|ug] | I I us I I
\ | | | | |

Fig. 6: An example of bidirectional timestamp adjustment.

a lower transaction abort rate. As we can see from Example
2, by using BDTA, T5 is ordered before T and can commit
successfully, while by using T/O, T5 is ordered after T} and
should abort. BDTA relies on timestamp intervals to order
transactions dynamically. Inspired by the DTA scheme [9],
[30], we introduce a timestamp interval [LB, U B] for each
transaction 7', For every two transactions 73, T}, during the
entire execution, we guarantee that:

;UB<T; LB ifT; = 1T} 1)
Eq. 1 ensures that, for any two transactions T; and 7Tj, if
there exists a partial order T; — T;, we have T;.UB <
T;.LB, i.e., ordering T; before T} in the sequential history.
Any transaction violating the required ordering constraint
cannot produce a legal timestamp interval and aborts. We
then give an example to show how BDTA preserves required
orders by adjusting the timestamp intervals of transactions.

Example 3. Reconsider H3 in Example 2. We present how
the timestamp intervals are adjusted in Fig. 6. From the
global clock perspective, T} first starts, followed by 13, T3,
and T}. First, when T3 starts, the timestamp intervals of 17,
T5, and T3 are shown in the first column. Next, when T}
commits, we can detect the write-legal orders (1> — T}
and 73 — T1) and bidirectionally adjust the timestamp
intervals of T5 and 75 with T, making 75.UB < T7.LB and
T3.UB < T1.LB (second column). Then, when 75 commits,
because we cannot detect the write-legal order 7> — 75 and
the program order T, — T4, we do not perform the adjust-
ment of T, with other transactions but simply set 75.U B to
T5.L B (third column). Afterward, when T} starts, by detect-
ing program order 15 — T}, we adjust T,.LB to guarantee
T4,.LB > T5.UB (fourth column). When T, commits, we
adjust T,.LB to guarantee 174.LB > T}.UB because of the
write-read order 177 — T4 (fifth column). Finally, when T3
commits, we detect write-legal order 75 — 73 and adjust
T5.LB to guarantee T5.LB > T5.U B (sixth column). O

As illustrated in Example 3, we preserve the partial
orders required in sequential history S5 by adjusting times-
tamp intervals of transactions. We must emphasize that
BDTA is different from existing DTA algorithms, like Sun-
dial [55], MaaT [31], TCM [30]. First and foremost, BDTA
adjusts timestamp intervals to preserve required orders in
multi-level serializability. Second, BDTA optimizes the size
of the timestamp interval for each adjustment, leading to a
lower transaction abort rate. Take history H3 as an example.
As discussed, the order 75 — T3 — 1) needs to be pre-
served. However, existing DTA algorithms cannot preserve
such an order, causing 15 or T3 to abort. Specifically, Sundial
and MaaT do not have the capability to adjust timestamp
intervals bidirectionally, meaning that if there exists an order
T; — T;, when T; or T; commits, the timestamp interval of

5

T; or T} is adjusted individually. For this reason, when T}
commiits, they set T1.U B = T.LB without adjusting 15.L B
and 75.U B. In Fig. 6, T; starts after T, indicating T5.UB >
T>.LB > T1.LB. When T attempts to commit, due to the
write-legal order 15 — 7T, there does not exist a legal
timestamp interval of 75 to guarantee 7,.UB < T).LB,
causing 75 to abort. For TCM, although it performs the bidi-
rectional adjustment, its adjustment cannot leave enough
legal interval space for transactions to commit. For example,
to preserve T, — 17, TCM sets 11.LB = 15.LB + 1 and
T,.UB = T5.LB to make 15.UB < T;.LB. However, by
doing this, there does not exist any interval space between
T5.UB and T;.L B, and any transaction ordered between 75
and 717, like 75 will abort. BDTA solves the interval space
problem of TCM by introducing an adaptive timestamp
interval selection method, which is discussed in Section 5.1.
According to Definition 8, if a transaction violates the or-
dering constraints, the corresponding history must contain
a cycle of partial orders. BDTA ensures such a transaction
cannot produce a legal timestamp interval:
Theorem 2. Given a set of transactions in the history that form
a cycle of partial orders, there must exist at least one transaction
TwithT.LB >T.UB. O

Proof. 1f a history H contains a cycle of partial orders, there
must exist the order T; — T; — ... — T;. Suppose each
transaction 7" in the history H satisfies T.LB < T.UB,
According to Eq. 1, we ensure T;.UB < T;.LB <T;.UB <
T;.LB, which indicates T;.UB < T;.LB. Therefore, T;
cannot obtain a legal timestamp interval, and the history
H containing a cycle of partial orders must include a trans-
action like T; with T;.LB > T;.UB. O

Theorem 2 guarantees that, during the entire execution,
if a given set of transactions forms a cycle of partial orders,
we can abort the transactions with illegal timestamp inter-
vals to destroy the cycle and ensure correctness.

4.2 BDTA in Action

We elaborate on how BDTA works in decentralized MVCC-
based databases, especially when and how timestamp in-
tervals of transactions are initialized and adjusted. BDTA
follows the optimistic way to do concurrency control. For
this purpose, the process P}, coordinates the entire lifecycle
of a transaction 7; from the initialization, through the local
execution, to the validation and commit.

o Initialization. The process P}, creates an execution context
for T}, including transaction snapshot 7j.ss, timestamp
interval [LB,UB|, and commit timestamp T;.c, etc. Be-
cause we target MVCC-based databases, we process read
requests based on snapshot isolation, i.e., T; does reads
and writes based on the snapshot T;.ss. For this reason,
T;.ss is initialized below:

GET_LC()
GET_HLC()
TS_ORACLE()

serializability,
T;.85 = sequential serializability, (2)
strict serializability

Function GET_LC() returns the local timestamp of
the process P and is used for serializability. Func-
tion GET_HLC(), shown in Alg. 1, returns an HLC
timestamp, which is used for sequential serializability.
Note that HLC timestamps of two transactions with the
causal-related order are pairwise comparable. Function

Authorized licensed use limited to: Renmin University. Downloaded on July 09,2023 at 07:19:25 UTC from IEEE Xplore. Restrictions apply.

© 2023 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3277969

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

According to Eq. 8: | T,.UB=T,.LB-1

Ra(Xo) 7 C

72

History Hs

/ L
<—T2:'—> | \
Wi(xy) idation. C1
T Vahdatlonl,,—|

e T4 —

bl
According to Eq. 7: |T1.LB=T,.LB+ps ,

Fig. 7: Timestamp interval adjustment for Example 3.

P, —

TIME_ORACLE() returns the current global timestamp al-
located from a centralized timestamp oracle [38] and is
used for strict serializability. [LB, U B] of T; is initialized:

[LB,UB] of T; will be dynamically adjusted during the
local execution and validation. Given a distributed trans-
action T;j, we denote the set of participant servers that
are involved in the execution of T; as S(7;), and denote
the local transaction executed in the participant server
s € S(T;) as Tf. We do the initialization for T} below.

T#.ss = T,.ss,T°.LB =T;.LB,T*.UB =T,.UB (4)

« Local execution. Local transaction T of T} is executed in
participant server s respectively. We now present how to
adjust [LB,UB| of T} to preserve the write-legal order
during the local execution. Upon a read R;(x,,) by T7,
if BDTA detects that a new version z,,1 is generated
by another committed transaction 7,1, the timestamp
interval of T} is adjusted below:

T .UB = zpy1.cts — 1 (5)

where x,,41.cts is the commit timestamp of 7},11, de-
noted as Tj,4i1.c (version x,,41 is written by T},
that takes the same subscripts). Note that if the write
Wint1(2m+1) happens after R;(x,,) from the global clock
perspective, the write-legal order is guaranteed during the
local validation of 717} , ;. Besides, we preserve the write-
read order based on snapshot isolation. Because for each
data item x,,,, only T} with T}?.ss > x,,,.cts can “see” 2y,
which guarantees the write-read order T,,, — T;. We will
elaborate on the local execution in Section 4.4.

« Validation. After completing local execution, the process
Py, coordinates all local transactions 7;° following two-
phase commit (2PC). To begin with, in the first phase of
2PC, called the prepare phase, each local transaction does
the local validation and determines a proper [LB,U B]
of T}?. To preserve the write-legal order, we examine the
write set T} .ws of T}’ and adjust T;°. L B:

T7.LB =max{T;.LB,
max {z.RTS + 1|z € T/ .ws}}

where z.RT'S is the maximum commit timestamp of all
committed transactions that ever read data item z. We
then adjust the timestamp intervals of T}’ and 7 bidirec-
tionally, i.e., we identify every concurrent transaction 77}
that reads data item x € T;.ws, and adjust T;”. L B:

T5.LB = max{T*.LB,)
max {T;.LB + p;;|T; ws N T;.rs # 0}}

where 115 ; represents the interval space for the bidirec-
tional adjustment. Finally, we adjust 77.UB of every T7:

(6)

T:.UB = min {T;.UB,T?.LB — 1} ®)

6

Reconsider Example 3. As shown in Fig. 7, during the
validation of T}, by examining the write set of 7}, BDTA
identifies transactions 75 and 7% that read the data item
z, and hence bidirectionally adjusts 77.LB and 75.UB
(IT7.LB and T5.UB) to preserve the write-legal order
Ty — Ty (T3 — T1). To achieve this, we first set 77.LB
to max{75.LB + pi21,T5.LB + p3,1} based on Eq. 7 and
then set 75.UB and T5.UB to I7.LB — 1 based on Eq. 8.
o Commit. After all local transactions finish the validation
phase, T; comes to the second phase of 2PC named
as commit phase. In the commit phase, the process F;
collects [LB,UB] of T; from each participant server
s € S(T;) and updates [LB,UB] of T; based on Eq. 9. If
T,.LB > T,.UB, Py notifies each participant to abort the
local transaction; otherwise, P notifies each participant
server to commit the local transaction.
T;.LB = max{T;.LB|s € S(T;)}

9
Finally, the commit timestamp of T is set below.
T;.c=1T;.LB (10)

Using Eq. 10, we guarantee the order of transactions’

commit timestamps follows that determined by BDTA. We

will elaborate on the validation and commit in Section 4.5.
4.3 Multi-level Serializability Guarantee
BDTA preserves orders among serializable transactions by
maintaining disjoint timestamp intervals.
Theorem 3. Given a history H, BDTA guarantees the execution
of H satisfies serializability. O
Proof. Given any transaction 7; in H, for local transaction
T7 in each participant server s € S(T;), BDTA guarantees
there exists a sequential history H preserving the write-
legal order (Eq. 5-8), with H|T} = H|T}. Besides, due to
snapshot isolation, we ensure the write-read order in H.
Thus, according to Definition 8, BDTA achieves serializabil-
ity in each participant server. Further, by imposing 2PC on
Vs € S(T;) to make an agreement on [LB, UB] of T; (Eq. 9),
plus Eq. 10, we guarantee that H satisfies serializability. [

Theorem 3 guarantees a serializable execution using

BDTA. We now discuss how BDTA guarantees strict seri-
alizability and sequential serializability, respectively.
e Strict serializability guarantee. We additionally pre-
serve the real-time order based on TIME_ORACLE(). In
fact, when T; commits, if 7;.LB < TIME_ORACLE(), the
real-time order is preserved by Eq. 10, ensuring Tj.c <
TIME_ORACLE(). By so doing, a new transaction 7T start-
ing after T;’s commit will have T}.ss > TIME_ORACLE(),
and hence, T can always “see” T;’s writes. Otherwise, if
T;.LB >TIME_ORACLE(), to preserve the real-time order, T;
waits until 7;.L B <TIME_ORACLE() to commit. Thus, under
strict serializability, we introduce an additional constraint
for T; to commit, as shown below.

T;.LB < TIME_ORACLE() (171)

e Sequential serializability guarantee. We preserve the
causal-related order based on HLC [17]. We implement
HLC by allowing each process to allocate timestamps in-
dividually. We must emphasize that for each transaction,
BDTA updates HLC only once. Alg. 1 describes the HLC
timestamp allocation, while Alg. 2 presents the HLC update

Authorized licensed use limited to: Renmin University. Downloaded on July 09,2023 at 07:19:25 UTC from IEEE Xplore. Restrictions apply.

© 2023 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3277969

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

2:01 2:02 2:03 2:04
P,-time ""P ffffffffff Lo b b
P ~ T2.LB:<2:02,0> ~ T4.LB:<2:04,0>
;
«—T <« T
» T1LB:<1:58,0> ,~{UPDATE HLC(<2:02, 1, ,>)|
P " ’:| — N
. -~ 1 L
P2_t|me 77777“”””””T 7777777777 ‘7777‘7777777‘ 77777777777777

Fig. 8: An example of allocating HLC timestamps.

upon T; commit using T;.c.pts and Tj.c.lts. Note that ptsy,
and Its;, denote the physical clock pts and Lamport clock
lts of the process Py, respectively. Reconsider Example 3.
As shown in Fig. 8, upon the commit of T3, T}.c is set to
(2:02, p2.1), larger than T». LB, (2:02, 0). The process P up-
dates its HLC timestamp using 77 .c. T then commits with
T,.LB. All subsequent transactions in the processPs, e.g.,
T,, take larger HLC timestamps than 75.c. Our transaction-
level HLC scheme preserves the causal-related order. For
example, since T}.ss is larger than T5.c and Tj.c, all writes
seen by 7> and 77 can also be seen by T4, preserving the
causal-related orders 7o — T4 and 17 — T}4.

Algorithm 1: GET_HLC() [17]

1 if ptsy > current process timestamp then ltsj++;
2 else ptsy < current process timestamp, ltsy < 0;
3 return (ptsg, ltsk);

Algorithm 2: UPDATE_HLC(pts, Its) [17]

1 temp <— ptsg;
2 ptsy < max{ptsy, pts, current process timestamp} ;
3 if ptsy = temp and ptsy = pts then
ltsy < max{ltsk,lts} +1;
4 else if ptsy = temp then ltsi + +;
5 else if ptsiy = pts then lts, < lts+ + ;
6 else lts, < 0;

e Summarization. To summarize BDTA, the adjustment is
triggered by a transaction 7; upon either (1) CONDITION 1:
T; reads a version z,,, and a new version 41 is generated
by a committed 7},+1 before T;’s read, or (2) CONDITION
2: T; enters the validation phase. CONDITION 1, 2 are used
to preserve the write-legal order, and CONDITION 1 plus
snapshot isolation preserves the write-read order.

4.4 Local Execution

We present how local execution in BDTA works. In our
design, a data item x is associated with metadata that
has four fields (shown in Fig. 9): (1) z.pk is the primary
key of z; (2) x.RT'S is the maximum commit timestamp
of all committed transactions that ever read z; (3) . WT
is the transaction that is currently modifying x. It is set
during the validation, and acts like a “soft-lock” to prevent
write-write conflicts, i.e., two transactions are disallowed
to modify x simultaneously; (4) .RIDs is a lock-free list,
recording every non-committed transaction that reads z.
Like many optimistic algorithms, we maintain the read set
T?.rs and write set T;°.ws of T;. To enable exclusive access
to [LB,UB| of T}, we provide a spinlock T} .sl, and any
access to [LB, U B] of T? must hold the lock.

Alg. 3 shows the pseudo-code of Read () and Write ()
functions. Read () takes a local transaction T}’ and a search
key key as the input (line 1). We directly return z; if it
is already in 7.ws (line 2). Otherwise, we add key to

7
Participant s1
RTs[wT| RDs |' RTS [WT| RIDs

gy, (X [Too | R P T [[Te [T [T 1)

T2 Xo | To.C | [CommitM X1 |T|.C }—" Xo |T0.C ‘
Coed vy [Toc] T 1! [Tl T =]

o [Toc] | Tyt [Tos]
Status of data items after Rz(yo) | Status of data items after Cq

Fig. 9: Status of data items using BDTA.

T7.rs (line 3), find z, and update z.RIDs by adding T}
(lines 4-5). We next invoke SnapshotRead () to read a
proper version z,, and its next version x,,+1 (if any) (line
6). In snapshotRead (), if we detect (1) some 77 in the
validation phase is writing = (i.e, z.WT = T7), and (2)
Tm is the latest version while x; is not visible yet (the
order between T’ and Tj‘” remains undetermined), we do not
read x until Tjs commits to guarantee correctness. If 2,1
exists, we then adjust 7;°.UB based on Eq. 5 by holding
the lock T7.sl (lines 7-10). Finally, x,, is returned (line 11).
Function Write () takes a local transaction 77, x’s primary
key z.pk, and a new version z; to be written as the input. If
a version z; with the same z.pk is in T} .ws, «} is updated
by z;; otherwise, a pair (x.pk, ;) is added into T7.ws.

Algorithm 3: Execution of local transaction 7}’

1 Function Read (T}, key) :

if (key, z;) € T} .ws then return z;;

TP .rs < 17 .rs U {key};

x < location the data item according to key;
2.RIDs <— x.RIDs U {T}};

Tm,Tm+1 < SnapshotRead (key, Tis.ss);
if Tm+1 then

L # lock() acquires the spinlock 77 .sl

© 0 NN S Ul B W N

T# UB < min{T?.UB, Zpi1.cts — 1};
unlock() releases the spinlock T7.s!

=
1S

o
jny

return z,,;

=
N
g

unction Write (77 x.pk, ;) :
if (z.pk, z;) ¢ T; .ws then
T7 ws < T7 ws U {{z.pk,x:)};
else replace (z.pk, z;) with (z.pk, z;) in T} .ws;

jury
w

Jun
Iy

Example 4. In reference to Fig. 5 and Fig. 6, let us recon-
sider the history Hs. T} first starts and executes Ry (xg), dur-
ing which we store z.pk into T.rs, insert 17 into . RIDs,
and read the proper version zy. T} then executes Wy (x1) to
store (x.pk,x}) into Ti.ws. After that, T» and T3 perform
Rs(xg), R3(xo) and Ra(yo) using the same logic as Ry (o),
described in Alg. 3. Now we have ©.RIDs = {T7,T5,T5}
and y.RIDs = Ty, as shown in the left part of Fig. 9.

4.5 Validation and Commit
We introduce the validation of a local transaction 7T in

Alg. 4. Vx; € T .ws, we set a soft-lock on = by T using
compare-and-swap (lines 2—4). If a write-write conflict on
x is detected, we abort 7. Next, by invoking the function
BiAdjust (), we bidirectionally adjust the timestamp in-
tervals of T} with transactions in x.RIDs based on Eq. 6-8
(line 5). We then adjust T7.LB to preserve the write-read
order (line 7). We abort T} if its timestamp interval is illegal
(line 9); otherwise, the validation of 7T} is passed (line 10).
We present the commit of a local transaction 77 in Alg. 5.
We encapsulate the local validation in the prepare phase
of 2PC, and once the validation phase of T; completes

Authorized licensed use limited to: Renmin University. Downloaded on July 09,2023 at 07:19:25 UTC from IEEE Xplore. Restrictions apply.

© 2023 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3277969

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

successfully, the process Pj coordinates 7T}’ to commit by
writing data items to the database, updating x.RT'S, and
releasing the “soft lock” (setting x.WT' to 0, lines 2-5).
Besides, for each key € T;.rs, we update x.RT'S by the
commit timestamp of 7T; using atomic read-modify-write
(RMW), and remove T} from the read list z.RIDs (lines
6-8). If T}’s validation fails, the process P}, coordinates T}’
to abort by resetting x.WT' and removing T}’ from x.RIDs.

Handling contentions on list x.RIDs. We use a lock-free
list [23] to implement x.RIDs (line 12, Alg. 4) for better
performance. It is unnecessary to acquire locks on z.RIDs,
and the reasons are two-fold. First, setting z.WT to T}
during the validation phase of the transaction 7; (line 3,
Alg. 4) blocks other transactions to read the current version
of x (line 6, Alg. 3). Second, for transactions that read pre-
vious versions of x but are not in 2.RIDs, their timestamp
intervals are adjusted in line 9, Alg. 3.

Algorithm 4: Validation of local transaction 7}’

1 Function Validation (77}):
2 for (x.pk,z;) € Ty .ws do
3 if t WT # TP and - CAS (x. WT,0,T;) then
4 L return false;
BiAdjust (T}, x);
lock() acquires the spinlock 77 .sl
T7.LB + max{T; .LB,z.RTS + 1};
unlock() releases the spinlock T7.s!
if T7.LB > T; .UB then return false ;

10 return true;

© ® N o wu

11 Function BiAdjust (17, x):
12 for T} € x.RIDs do

13 # lock() acquires the spinlocks T7.sl, 1} .sl by the
order T; — Tj

14 if T} has been local validated then

15 wait until Commit(77,T}.c) finishes or

timeouts;

16 L continue;

17 if I;'.LB < T;.LB then

18 | T7.LB <« T;.LB+ pji;

19 T;.UB + min{T;.UB,T{ .LB — 1};

20 # unlock() releases the spinlocks 77 .sl,T7 .sl by
the order 73 — T;

Algorithm 5: Commit of local transaction 7’

1 Function Commit (7}, T;.c):

for (x.pk,x;) € Ty .ws do
make z; visible in the database;
x.RT'S + max{z.RTS,T;.c};
atomic RMW 2. WT <« 0;

for key € T .rs do
7 z.RTS + max{z.RTS,T;.c};
atomic RMW z.RIDs + z.RIDs \ {1} };

uoR W N

(=2

9 Function Abort (T}):
10 for (x.pk,x;) € T; .ws do CAS (x.WT,T7,0) ;
u | forkey € T;.rsdo 2.RIDs < x.RIDs\ {T}'} ;

Example 5. Let us continue Example 4 to validate
whether T can commit. We set . WT to T}, adjust 17.LB
to ensure 17.LB > x.RT'S, and bidirectionally adjust the
timestamp intervals of 7} and transactions in x.RIDs (15
and 7%). Because of the order 75 — T} and T5 — 1}, we

8

i RTS | WT

alTe] - | [RTS [WT [RIDs |
In1 In2 | It [0 [0 [e-T1]
[al [c] [dITeli[m] 0 [0 [2=>Tr]

Fig. 10: Status of a B*-tree in BDTA.

adjust T7.LB to max(T5.LB + po1,T5 . LB + ps 1,17 .LB).
We also set 75.UB and T5.UB to 17 . LB — 1. We calculate
T1.LB based on T7.LB as discussed in Eq. 9, and then
commit 77 with T;.c = T.LB. Besides, we update z.RT'S
to Ti.c, reset ©.WT to 0, remove T} from x.RIDs, and
write version z; to the data item z, according to Alg. 5.
The status of data items is shown in the right part of Fig. 9.
Next, T5 commits with T5.c = T5.LB, removes T5 from
x.RIDs and y.RIDs, and updates y.RT'S to T5.c. After
that, T, then reads x; and commits, and hence, T}.c is
larger than T}.c. Finally, T3 executes R3(yo) and Ws(ys),
and start to commit. During the validation, 75 acquires
y.WT,adjusts T5.LB to y. RT'S +1 (I5.c+ 1), and examines
whether 75.UB > T5.LB. Because we introduce the adap-
tive timestamp interval selection method, 21 and pus 1 are
larger enough to obtain a legal timestamp interval for T3,
and therefore, T3 can commit successfully. We follow Alg. 5
to commit 75 and write version y3 into y.

4.6 Preventing Phantom Reads

We present how BDTA handles the phantom read, which
occurs when one transaction issues a predicate-based read
twice but obtains two different read sets. Given two con-
current transactions 77,75, T1’s snapshot T7.ss might be
larger than 7T5’s commit timestamp due to inconsistent local
clocks. When T triggers a predicate-based read through
the index, it may observe T5’s write after 75 commits,
leading to the phantom read. We handle the phantom read
by encapsulating BDTA into the index scheme. Without
loss of generality, we assume predicate-based reads can be
regarded as traversing the BT -tree index. We treat each leaf
node of the index as a data item, and we associate each leaf
node (denoted as [n) of the index with metadata in.RT'S,
In.WT, and In.RIDs similar to the data item (Fig. 9).
Because a predicate-based read needs to access leaf nodes
of the index, and a write needs to update a leaf node, we
then preserve the write-read order and write-legal order
over the leaf nodes. Consider two concurrent transactions
T and T5. T} has a predicate-based read to search keys in
the range [a,d]. As shown in Fig. 10, 71 needs to access
leaf nodes In; and Ing, and T3 is added to In;.RIDs and
Ino.RIDs. Afterward, suppose that T, writes the index key
b to the leaf node In; and commits. BDTA preserves the
write-legal order 77 — 1% by ensuring 7T1.UB < T,.LB.
Since T7.ss < I5.cis preserved, T} cannot observe the index
key b. In this way, the phantom read is eliminated by BDTA.

5 OPTIMIZATIONS

In this section, we introduce a heuristic method to adap-
tively determine the size of the timestamp interval for
each adjustment and explain how BDTA makes read-only
transactions always commit.

5.1 Adaptive Timestamp Interval Selection

As discussed in Section 4.1, selecting a good timestamp
interval size is essential to reduce the transaction abort

Authorized licensed use limited to: Renmin University. Downloaded on July 09,2023 at 07:19:25 UTC from IEEE Xplore. Restrictions apply.

© 2023 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3277969

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

rate. Reconsider Example 3. If no interval space exists
between 15.LB and T).LB, transactions ordered between
T, and T} (e.g., T3) would abort. Given any two transac-
tions T; and T; with order constraint 7; — 7T}, we use
;; to denote the interval space [T;.LB,T;.LB] between
T; and T}, ie., p;; = T1;.LB — T;.LB. Theoretically, a
proper u; ; should meet the following two requirements.
First, we require p;; > N j, where N, ; is the number
of transactions ordered between T; and T}. By so doing,
transactions ordered between T; and T} are more likely to
find a legal timestamp interval and commit. Second, we
need p; ; < T,.UB — T;.UB, where T}, is the transaction
with the smallest U B among transactions ordered after T;.
This property ensures transactions ordered after 7); will not
be influenced by p; ;. Otherwise, if u; ; > T, .UB — T;.UB,
T;.LB = T;.UB + p; ; can be larger than T}.U B, causing
transactions ordered after T} (e.g., T}) to abort.

Yet, computation of the best ; ; for any two transactions
T; and T; with constraint T; — T is infeasible because
we cannot obtain the precise value of N, ; and detect T},
in advance. For this reason, we instead propose a heuristic
method to adaptively estimate 11; ; based on the contention
level of the data items T; and T; accessed. For each data item
z, we collect the number of calls in bidirectional adjustment
(x.cno) to represent the contention level on z, denoted as
L(z). Recall that during the validation phase of Tj, for
each = € Tjs.ws, we use [i; ; to bidirectionally adjust the
timestamp intervals of T’/ and any other 7 in x. R Ds (line
18, Alg. 4). Consequently, a higher contention level L£(x)
indicates more transactions are likely to be ordered between
T; and T}, which requires ; ; to be positively correlated
with £(z), i.e., the higher £(z) is, the larger y; ; should be
assigned. We classify £(x) into three contention levels: low,
medium, and high contention, by simply comparing z.cno
with two pre-defined thresholds 7 and 2. Besides, we
assign py, ftm, and py, for each contention level to represent
the optimal timestamp interval space of that contention
level, as shown in Eq. 12.

o] xr.cno < 1 low contention,

i = § tm T1 < x.cno < 79 medium contention, (12)

pn T2 < x.Ccno high contention

We adaptively refine these interval spaces during the
execution based on Alg. 6. Initially, i, f4,, itn, are set to 1.
Then, we create an individual thread and periodically refine
them using Alg. 6, which is constructed based on the well-
known simulated annealing (SA) algorithm. We take the
timestamp interval to be adjusted pg, pr € {1, tm, pr},
and the temperature threshold 7., as the input. We denote
F (1) as the abort rate after applying ju.. After initialization
(line 2), we iteratively select a random /i (line 4) and examine
whether adopting [t can reduce the abort rate. If the abort
rate drops, we update u; = [i; otherwise, we accept fi
with a certain probability (lines 6-8). The probability follows
the Boltzmann distribution by examining e~*/°7 and a
random value seed € (0,1), where ¢ is Boltzmann constant
(line 6). For each iteration, temperature 7 is decreased to
A- T, where) is a hyper-parameter and set to 0.6 by default
(line 9). We terminate the iteration and output py if 7 is
decreased to the temperature threshold 7,y (line 10).

9

5.2 Non-validation for Read-only Transactions

We observe in BDTA, the timestamp interval of every read-
only transaction T is always legal, i.e., T;.LB < T;.UB is
guaranteed. The reason is that according to Eq. 5-8, T;. LB =
T;.ss and T;.ss < T;.U B are always true. Thus, we skip the
validation in this case and replace the costly 2PC with one
phase commit for read-only transactions.

Algorithm 6: Adjust timestamp interval pi,

1 Function AdaptiveAdjust (pr, Tmin):
Initialize F* <+ F(ux), T;
while 7 > Trin do
Generate a random timestamp interval ji;
At « F(p) — F*;
if At <0 or (At >0 and e 27 > seed) then
F = F(p);
Wk < [;
9 T+ X-T;

10 return py;

® N Ul R W@N

6 IMPLEMENTATION

In this section, we present our prototype system by integrat-
ing BDTA into Greenplum. Greenplum [21] is a distributed
database system technically built on top of PostgreSQL. It
has a single coordinator (master) and several participant
servers (segments). Each master/participant server runs a
PostgreSQL instance. To integrate BDTA into Greenplum,
we make the following extensions, and our implementation
is publicly available via https://github.com/dbiir/BDTA.

o Storage Engine. We re-construct the storage layer from
the traditional heap store to the key-value store using
RocksDB. We then implement data partitioning based on
the hash strategy.

e Multi-coordinator architecture. We extend Greenplum to
support multi-coordinator architecture. In this extension,
each coordinator runs a PostgreSQL instance, in which
each process coordinates transactions individually.

e Timestamp Allocation. We implement timestamp oracle
and HLC as discussed to assign timestamps. To ensure
high available timestamp allocation, timestamp oracle is
implemented as a raft-based service. In our implementa-
tion, timestamp oracle serves around ten million times-
tamps per second. The performance may be influenced by
high network latency over a WAN network.

e Concurrency Control. We integrate BDTA into Green-
plum to support multi-level serializability. First, we re-
place the globally shared snapshot to avoid costly dead-
lock detection by our timestamp allocation schemes. We
then encapsulate the validation phase and commit phase
into 2PC. To accommodate BDTA in Greenplum, we main-
tain read /write sets of transactions in segments to reduce
the communication overhead. Besides, for simplicity, we
store data items and their metadata for concurrency con-
trol separately. The metadata is stored in memory and
indexed with a red-black tree. We further use a separate
thread to execute Alg. 6 to periodically update the optimal
interval space for different contention levels.

7 EVALUATION

Our experimental evaluation is conducted from two per-
spectives. First, we integrate BDTA and the state-of-the-art

Authorized licensed use limited to: Renmin University. Downloaded on July 09,2023 at 07:19:25 UTC from IEEE Xplore. Restrictions apply.

© 2023 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3277969

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

35

o

Throughput (103 Txns/s)
v
o

Throughput (1 08 Txns/s)

50 - 15+ o p
45 BDTA-1 —© 1% < BOTAY —o— |
gga ‘ BDTA —%— e BDTA —%—

12 16 20 24 28 8 12 16 20 24 28

Server Count

(b) High contention

Server Count
(a) Low contention

Fig. 11: Effect of adaptive timestamp interval selection.

concurrency control algorithms into a distributed transac-
tion testbed, called Deneva [22]. We compare them in the
same context and report our findings. Second, we conduct
experiments on Greenplum integrated with BDTA to verify
the necessity of introducing multi-level serializability.

7.1 Workloads and Experiment Setup

We use the following workloads to conduct the experiments:

YCSB [13] is a synthetic benchmark modeling large-scale
Internet applications. It uses a relation with 10 attributes,
in which one is taken as the primary key. Each record in
this relation occupies 1KB. The dataset is horizontally parti-
tioned, and each partition is assigned to a participant server.
Following Deneva [22], we set each partition to have 16
million records, indicating the data size of each participant
server is 16GB. By aiming to simulate different contention
levels, we follow Zipfian distribution to control the access
on the same records using a skew factor, denoted as theta.
When theta=0, we access each record in equal probability.
Besides, we vary the write ratio to control the ratio of
reads and writes by taking operations from transactions as
a whole, i.e., write ratio=50% means there are totally 50%
writes and 50% reads in transactions. By default, we set
write ratio=50% and theta=0.6.

TPC-C [46] is a popular OLTP benchmark simulating
a warehouse order processing application. It contains 9
relations. Each warehouse contains 100MB data size, and by
default, we set 32 warehouses per participant server. TPC-
C simulates 5 types of transactions, in which NewOrder,
Payment, and Delivery are read-write transactions, and
Stock-Level and Order-Status are read-only transactions (a
transaction with both reads and writes is referred to as a
read-write transaction). Following Deneva [22], we do not
include “think time” and user data errors that cause 1%
of NewOrder transactions to abort, aiming to test the peak
performance. Unless otherwise specified, we use the default
transaction mix of standard TPC-C in our experiments.

We conduct experiments except Section 7.5 using an in-
house cluster with 28 virtual nodes, each of which has 4
cores/8 threads and 32GB memory. Unless otherwise speci-
fied, we run the protocols on 16 nodes, each containing 1 co-
ordinator and 1 participant server. The RTT of the network
is around 0.3ms. For each experiment, we first run 30s for
warm-up and then collect results of the following 60s. We
evaluate the performance in terms of: (1) throughput, which
is the number of committed transactions; and (2) abort rate,
which is the percentage of aborted transactions against all
finished transactions.

7.2 Effect of Adaptive Timestamp Interval Selection

We first study the effectiveness of the adaptive timestamp
interval selection method by comparing BDTA and BDTA

10

TABLE 2: Comparison of the abort rate between BDTA and
BDTA-1

Low Contention | High Contention
BDTA 0.80% 55.37%
BDTA-1 0.88% 77.33%

without adaptive timestamp interval (denoted as BDTA-
1) under sequential serializability. We set p adaptively in
BDTA, and fix pu=1 in BDTA-1. We run them under the
low contention workload (theta=0.25) and high contention
workload (theta=0.75), respectively. We vary the cluster
from 8 to 28 nodes, and plot the results in Fig. 11. Fig. 11a
shows that under the low contention workload, BDTA
achieves comparable performance with BDTA-1, showing
the additional cost for running the auto-tuning algorithm
is negligible. We further study the benefit of adaptive
timestamp interval selection over the high contention work-
load, and plot the results in Fig. 11b. We can observe that
BDTA achieves higher throughput and better scalability
than BDTA-1 by up to 91.42%. The performance of BDTA
gains from the adaptive timestamp interval selection, which
helps most transactions get a proper timestamp interval,
thereby reducing the abort rate. As shown in Table 2,
although more transactions need to abort under the high
contention workload, the abort rate of BDTA is lower than
that of BDTA-1 by a factor of 21.96%.

In the following experiments, we adopt the adaptive
timestamp interval selection in BDTA by default.

7.3 Comparisons with Dynamic Ordering Algorithms

We compare BDTA with three recently proposed con-
currency control algorithms using the DTA scheme, ie.,
MaaT [31], Sundial [55], and TCM [30]. Because MaaT
and Sundial only support serializability, we conduct our
experiments under serializability for fair comparisons.

We make the comparison under different contentions by
varying write ratio, and plot the results in Fig. 12a. As we
can see, for the read-only transactions (0% of read-write
transactions), BDTA outperforms the others by a factor of
38.66%. This is because, for read-only transactions, BDTA
eliminates the expensive 2PC cost, and hence reduces the co-
ordination overhead. Besides, when the percentage of read-
write transactions increases, all algorithms suffer higher
abort rates (shown in Fig. 12b), causing the performance
to drop. Due to the adaptive timestamp interval selection,
transactions are more likely to obtain proper timestamp
intervals and commit, and therefore, BDTA performs the
best with the lowest abort rate.

We evaluate the effect of theta, and plot the results in
Fig. 12c. BDTA outperforms MaaT, Sundial, and TCM by
up to 22.32% due to three reasons: First, MaaT and Sun-
dial are single-version based, while BDTA is multi-version
based, which allows reads do not block by the writes to
increase concurrency. Second, MaaT and Sundial have to
issue expensive 2PC for read-only transactions to commit
while BDTA does not. Third, MaaT, Sundial, and TCM
use a fixed space for timestamp adjustment, while BDTA
leverages the adaptive timestamp interval selection, which
further reduces abort rates and improves performance. The
time breakdown in Fig. 12d with theta=0.6 indicates that the
time spent on aborting transactions in MaaT, Sundial, and
TCM is much higher than that in BDTA.

Authorized licensed use limited to: Renmin University. Downloaded on July 09,2023 at 07:19:25 UTC from IEEE Xplore. Restrictions apply.

© 2023 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3277969

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

90’ MAAT 40 MAAT
SUNDIAL —#- 35 | SUNDIAL —#: B
80 TCM —x%— 30 TCM —
BDTA —%— BDTA —¥— £

y Ko
D A

L
Abort Rate (%)
=
o o
L

Throughput (103 Txns/s)
(2}
o
T

. . i I
0 20 40 60 80 100 0 20 40 60 80 100
% of Read-Write Transactions % of Read-Write Transactions

(a) Throughput (b) Abort rate

70 T T Execution =
Prepare ==

Commit ==
Abort &=z

0.8
0.6
0.4
0.2

0

Throughput (103 Txns/s)
Norm. Runtime

>
22
1 B B

’1//4 4 SU/VO/‘:OA// 607:4
(d) Time breakdown
Fig. 12: Serializability with varying theta and write ratio.

it U R
0 0.1 02 0.3 04 05 0.6 0.7 0.8
Skew Factor (Theta)

(c) Throughput

260

720 F T T T T k k

30 MAAT

20 SUNDIAL —A— -

10k CM —>%— |
L, BOTA X e

8 12 16 20 24 28 8 12 16 20 24 28
Server Count Server Count

(a) Medium contention (b) TPC-C
Fig. 13: Scalability under serializability.

Throughput (103 Txns/s)
IS
IS
X T T
Throughput (103 Txns/s)
>
3

We next investigate the scalability by varying the cluster
from 8 to 28 nodes, and plot the results in Fig. 13. (1) Scal-
ability over YCSB. We study the scalability over the medium
contention workload (theta=0.6), and plot the results in
Fig. 13a. We can observe that BDTA achieves up to 24.23%
performance gain and the best scalability when the number
of nodes varies. (2) Scalability over TPC-C. We further evalu-
ate the performance under the TPC-C workload, and report
the results in Fig. 13b. In this experiment, we customize
the TPC-C workload with 50% NewOrder transactions and
50% Payment transactions. BDTA still achieves up to 20.51%
higher throughput over the next-best algorithm. Again, the
scalability benefit of BDTA mainly comes from our special
design that adjusts timestamp bidirectionally, which reduces
the overhead of coordinators. As discussed in Section 4.5,
each transaction in BDTA locally adjusts timestamp inter-
vals in involved participant servers, and coordinators are
just responsible for collecting all local timestamp intervals.

7.4 Comparisons with Static Ordering Algorithms

We compare BDTA with three static ordering concurrency
control algorithms under sequential serializability: 2PL [4],
MVCC [5], and Silo [47]. For 2PL, we implement the No-
Wait variant to prevent deadlock. We implement MVCC by
ordering transactions based on their start timestamps. Silo is
an OCC-based algorithm and uses the serialization point to
order transactions, and we extend it into distributed setting
according to Google F1 [41]. We make local timestamps of
each process monotonically increase using HLC, which is
capable of preserving the program order.

We first study the effect of contentions by varying the
skew factor theta, and plot the results in Fig. 14. As we
can see, BDTA performs up to 56.58% better than the next-
best algorithm. As shown in Fig. 14a, when theta< 0.6, Silo
performs the worst because Silo introduces additional over-
head in the validation phase, where a transaction reads data

11

Abort Rate (%)
o
o

Throughput (103 Txns/s)

025 05 06 075
Skew Factor (Theta)

(a) Throughput

025 05 06 075
Skew Factor (Theta)

(b) Abort rate
Fig. 14: Sequential serializability with varying theta.

35

3 701 ¥k ¢ K
% <
~ 60 [
B sof ?
S w0 z
2 5% £
g % 9
S 20pf I
£ 10 . £ :

8 12 16 20 24 28 8 12 16 20 24 28

Server Count Server Count

(a) Medium contention

Execution =3
Prepare =

(b) High contention

Execution =
Prepare ==

Commit =2
Abort &=

Commit =3
Abort =

1
0.8
0.6
0.4
0.2

1
0.8
0.6
0.4
0.2

0

il

RS

Norm. Runtime
Norm. Runtime

KKK

fresece
553
heaeees

SILO MVCC 2PL BDTA

(d) High contention

5K

SILO MVCC 2PL BDTA
(c) Medium contention

ptatess! ISR

Fig. 15: Scalability under sequential serializability.

items in its read set again to examine whether they remain
unchanged. When theta reaches 0.6, the cost of aborting
transactions increases and becomes the bottleneck for 2PL,
MVCC, and Silo, which can be verified in Fig. 14b. Because
BDTA orders transactions dynamically, BDTA shows a bet-
ter tolerance on contentions, leading to a higher throughput.

We then perform the scalability evaluation under se-
quential serializability. As observed in Fig. 15, BDTA
achieves up to 1.19x higher throughput than the second-
best algorithm under the medium contention workload
(theta=0.6) and high contention workload (theta=0.75). The
performance of BDTA is mainly due to the bidirectional
timestamp adjustment mechanism, ensuring the lowest
abort rate, as verified in Fig. 15¢ and 15d.

7.5 Comparisons of Multi-level Serializability

In this section, we conduct experiments on an in-house
cluster with 3 high-performance nodes running CentOS 7.4.
Each node has two Intel(R) Xeon(R) Platinum 8276 CPUs
(28 cores x 2 HT), 8 x 128GB DRAM, and 3TB NVMe SSDs.
We deploy Greenplum with 2 coordinators and 3 participant
servers in this cluster. Each node hosts at most 1 coordinator
and 1 participant server. By default, the Round-Trip Time
(RTT), an indicator to measure the network latency, in the
cluster is 0.03 ms. To better evaluate the performance of
different serializability levels, we set RTT=1.5ms to simulate
the deployment over a WAN network (e.g., a cross datacen-
ter cluster). Note that setting RTT=1.5ms to simulate a cross
datacenter deployment is reasonable. For example, the RTT
from New York to Dallas is 40ms [35]. Thus, we use RTT
= 0.03ms, and RTT=1.5ms to simulate the network latency
over a LAN network, and WAN network, respectively.

We first study the effectiveness of integrating BDTA into
Greenplum (denoted as Greenplum+BDTA), and report the
comparison between Greenplum+BDTA and Greenplum in
Fig. 16. Note that Greenplum+BDTA is set under the se-
quential serializability level. Since Greenplum only supports

Authorized licensed use limited to: Renmin University. Downloaded on July 09,2023 at 07:19:25 UTC from IEEE Xplore. Restrictions apply.

© 2023 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3277969

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

80 18

7 @ T T S T | T N
) L B @ L reenplum i
S 70 S 16 Greenplum+BDTA —¥—
s £ K 14r B
0 60 - b o
=) L | o 12 r K
z 50 A z 10 + 4
5 40 F T R E] |
£ a0 ~.q{ & o DN
g 20} g af ~]
£ 10 £ 5
8 16 32 64 128 256 512 8 16 32 64 128 256 512
of Threads # of Threads
(a) YCSB (b) TPC-C

Fig. 16: Effect of integrating BDTA into Greenplum.

the read committed and repeatable read isolation level, we
set Greenplum under the read committed level to obtain the
peak performance. As we can see, even if Greenplum is set
under the read committed level, Greenplum+BDTA still out-
performs Greenplum by a factor of up to 2.01 x and 1.95x on
YCSB and TPC-C workload, respectively. The reason is two-
fold. On the one hand, Greenplum+BDTA can tolerate more
transaction concurrency, which leads to better performance.
As mentioned, BDTA is employed in Greenplum+BDTA
which reduces the abort rate and improves performance. On
the other hand, Greenplum coordinates transactions with a
costly distributed deadlock detection component, which is
eliminated in Greenplum+BDTA.

We then report the experimental results of executing
Greenplum+BDTA under different serializability levels over
LAN in Fig. 17a, 17b. We observe that the performance
under strict serializability (labeled as STRICT SER), se-
quential serializability (labeled as SEQ SER), and serializ-
ability (labeled as SER) almost coincide. This is because, in
a low latency network environment, like LAN, the effect of
requesting timestamps from timestamp oracle service on the
overall performance is negligible. The main cost comes from
doing concurrency control, which is roughly the same under
strict serializability and sequential serializability.

We finally report the experimental results over a simu-
lated WAN network in Fig. 17¢c, 17d. We find that sequential
serializability and serializability almost perform the same,
and their throughput is up to 4.53 x higher than that of strict
serializability. The reason is that, in a high latency network
environment, like WAN, the cost of requesting timestamps
is comparable to that of doing concurrency control, and
probably becomes a dominant factor to the overall perfor-
mance (could be verified in Fig. 17d). Besides, by varying
the number of client connections from 8 to 128, sequential
serializability and serializability take an increasingly sig-
nificant benefit against strict serializability. Yet, by adding
more client connections, the contentions among transactions
become the bottleneck and cause the performance to drop.

7.6 Summary
We summarize the major experimental findings below:

o We show the efficiency and effectiveness of the adaptive
timestamp interval selection method, which reduces the
abort rate by up to 21.96% and improves the throughput
by up to 91.42% (Section 7.2).

e We confirm that BDTA outperforms the state-of-the-art
concurrency control algorithms, including dynamic or-
dering and static ordering algorithms (Section 7.3 and
Section 7.4).

o We recommend using strict serializability in the low la-
tency network, e.g., LAN, and sequential serializability in
the high latency network, e.g., WAN (Section 7.5).

12

@ 80 T T T T T 9 SI‘EH .
g 707 e 8 seaser % i
feor K : 2 [STRICTSER]
g 50 / B \5 i - B
S 40 . Bl S r -
Q ol - |- -
g of '/ SEQ gEE —)K—/\] . g - 1
£ fg T STRICTSER] W]

8 16 32 64 128 256 512 8 16 32 64 128 256 512

of Threads # of Threads

(a) Throughput over LAN (b) Latency over LAN
% 80 _— 9 - - - -
3 70 8 SER —&— *
g _. 7} __SEQSER —¥— /|
~ 60 A | STRICT SER 4
% 50 E 6
< 4 g 5L 1
2 30 s,]
K ©
g’ 20 e - 2 4
£ 10 1y]
g gb—e—=¢ . . | o |

8 16 32 64 128 256 512 8 16 32 64 128 256 512

of Threads # of Threads

(c) Throughput over WAN (d) Latency over WAN

Fig. 17: Multi-level serializability on Greenplum+BDTA.
8 RELATED WORK

Our study relates to formalizing consistency and isolation
levels, as well as distributed concurrency control algorithms.
In ACID databases, isolation levels are typically defined
by disallowing certain kinds of data anomalies. The AN-
SI/ISO SQL-92 specifies four data anomalies (e.g., dirty
write/read) and defines four isolation levels accordingly
[51]. By arguing that the definitions in SQL-92 lack math-
ematical formalization and could incur ambiguous inter-
pretations, a few works make formal re-definitions of data
anomalies [1], [3], [15], [19], [43]. Much effort has been de-
voted to the identification of new data anomalies, including
skewed read/write [3], aborted read [53], intermediate read
[53], etc. There are quite a few works to model data consis-
tency from different perspectives, e.g., result visibility [43],
state matrix [15], dependency graph [1], [2], and abstract
execution [11]. Recently, there is an increasing interest in
imposing consistency models [11], [24], [27], [28], [49] on
isolation levels. Quite a few works [12], [18], [48] impose ad-
ditional constraints like the causal-related order on snapshot
isolation [3]. Salt [52] imposes the eventual consistency [11]
on ACID transactions to provide BASE transactions. To be
more related, strict serializability [40] imposes the real-time
order on serializability. Strong session serializability [16] im-
poses the program order on serializability. Lynx [56] studies
serializability with the read-your-writes order. These works
impose partial orders on serializability in a case-by-case
manner. We model multi-level serializability to provide a
systematic analysis of consistency levels over serializability.
It is worth mentioning that strong session serializability [16]
and Lynx [56] can be reduced to sequential serializability.
Distributed concurrency control algorithms are typically
divided into two categories: (1) static ordering algorithms
and (2) dynamic ordering algorithms. The first category
determines the order of transactions statically. T/O [4] or-
ders transactions based on their start timestamps. OCC [26]
and its variants like Silo [47] determine the order based
on either the validation point or the serialization point.
2PL [4], [19] orders transactions by the first granted lock
on conflict data items. Calvin [45] uses a deterministic
method to order transactions before execution. Imposing
T/O over MVCC [39] can potentially support sequential
serializability by the monotonic increasing local timestamp
and strict serializability by the timestamp oracle [38]. Yet,

Authorized licensed use limited to: Renmin University. Downloaded on July 09,2023 at 07:19:25 UTC from IEEE Xplore. Restrictions apply.

© 2023 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3277969

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

the static ordering could cause a high abort rate due to
their strict order requirements, which is verified in our
experiments. On the contrary, the second category deter-
mines the order of transactions dynamically. Similar to
BDTA, they determine the order by adjusting the timestamp
intervals of transactions. Boksenbaum et al. are the first
to use DTA in distributed concurrency control [9]. MaaT
[31] and Sundial [55] are single-version based, and employ
logical timestamps to do the adjustment. TCM [30] inte-
grates DTA into the multi-version 2PL protocol, which is
mainly designed for centralized databases. TCM requires all
concurrent transactions to shrink their timestamp intervals
upon a conflict, which could incur unnecessary adjustment
overhead for aborted transactions. BDTA eliminates this
overhead by only adjusting other transactions’ timestamp
intervals during the validation. BDTA is different from the
other algorithms. First, BDTA adjusts timestamp intervals
to preserve required orders in multi-level serializability.
Second, BDTA adopts the adaptive timestamp interval se-
lection, leading to a lower transaction abort rate.

9 CONCLUSIONS

In this paper, we study serializability from different consis-
tency perspectives and formalize multi-level serializability.
To support multi-level serializability, we propose a novel
concurrency control algorithm called BDTA. BDTA can dy-
namically order serializable transactions and preserve par-
tial orders among transactions required in the consistency
models. We integrate BDTA into Greenplum, and release
the implementation as open source. We conduct extensive
experiments to show the necessity of introducing multi-level
serializability and the performance gain of BDTA compared
with state-of-the-art concurrency control algorithms.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
constructive comments. This work was partially supported
by National Natural Science Foundation of China under
Grant 61972403, 61732014, and Tencent Rhino-Bird Joint
Research Program. Wei Lu and Xiaoyong Du are the cor-
responding authors.

REFERENCES

[1] A. Adya. Weak consistency: a generalized theory and optimistic
implementations for distributed transactions. 1999.

[2] P. Bailis, A. Davidson, A. D. Fekete, A. Ghodsi,]J. M. Hellerstein,
and I. Stoica. Highly available transactions: Virtues and limita-
tions. Proc. VLDB Endow., 7(3):181-192, 2013.

[3] H. Berenson, P. A. Bernstein, J. Gray, J. Melton, E.]J. O'Neil, and
P. E. O'Neil. A critique of ANSI SQL isolation levels. In SIGMOD
Conference, pages 1-10. ACM, 1995.

[4] P. A. Bernstein and N. Goodman. Concurrency control in dis-
tributed database systems. ACM Comput. Surv., 13(2):185-221,
1981.

[5] P. A. Bernstein and N. Goodman. Multiversion concurrency con-
trol - theory and algorithms. ACM Trans. Database Syst., 8(4):465—
483, 1983.

[6] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency
Control and Recovery in Database Systems. Addison-Wesley, 1987.

[7] P. A. Bernstein, D. W. Shipman, and W. S. Wong. Formal aspects
of serializability in database concurrency control. IEEE Trans.
Software Eng., 5(3):203-216, 1979.

[8] C. Binnig, A. Crotty, A. Galakatos, T. Kraska, and E. Zamanian.
The end of slow networks: It's time for a redesign. Proc. VLDB
Endow., 9(7):528-539, 2016.

[9] C. Boksenbaum, M. Cart, J. Ferrié¢, and J. Pons. Concurrent
certifications by intervals of timestamps in distributed database
systems. IEEE Trans. Software Eng., 13(4):409-419, 1987.

13

[10] Y. Breitbart, H. Garcia-Molina, and A. Silberschatz. Overview of
multidatabase transaction management. VLDB J., 1(2):181-239,
1992.

[11] S. Burckhardt, A. Gotsman, and H. Yang. Understanding eventual
consistency. Microsoft Research Technical Report MSR-TR-2013-39,
2013.

[12] A. Cerone, A. Gotsman, and H. Yang. Transaction chopping for
parallel snapshot isolation. In DISC, volume 9363 of Lecture Notes
in Computer Science, pages 388—404. Springer, 2015.

[13] B.F Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with YCSB. In SoCC, pages
143-154. ACM, 2010.

[14] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,].]J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W. C. Hsieh,
S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura,
D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak,
C. Taylor, R. Wang, and D. Woodford. Spanner: Google’s globally-
distributed database. In OSDI, pages 251-264. USENIX Associa-
tion, 2012.

[15] N. Crooks, Y. Pu, L. Alvisi, and A. Clement. Seeing is believing: A
client-centric specification of database isolation. In PODC, pages
73-82. ACM, 2017.

[16] K. Daudjee and K. Salem. Lazy database replication with ordering
guarantees. In ICDE, pages 424-435. IEEE Computer Society, 2004.

[17] M. Demirbas, M. Leone, B. Avva, D. Madeppa, and S. Kulkarni.
Logical physical clocks and consistent snapshots in globally dis-
tributed databases. 2014.

[18] S. Elnikety, W. Zwaenepoel, and F. Pedone. Database replication
using generalized snapshot isolation. In SRDS, pages 73-84. IEEE
Computer Society, 2005.

[19] J. Gray, R. A. Lorie, G. R. Putzolu, and L. L. Traiger. Granularity
of locks and degrees of consistency in a shared data base. In IFIP
Working Conference on Modelling in Data Base Management Systems,
pages 365-394. North-Holland, 1976.

[20] J. Gray and A. Reuter. Transaction Processing: Concepts and Tech-
niques. Morgan Kaufmann, 1993.

[21] Greenplum. https://greenplum.org/.

[22] R. Harding, D. V. Aken, A. Pavlo, and M. Stonebraker. An
evaluation of distributed concurrency control. Proc. VLDB Endow.,
10(5):553-564, 2017.

[23] T.L.Harris. A pragmatic implementation of non-blocking linked-
lists. In DISC, volume 2180 of Lecture Notes in Computer Science,
pages 300-314. Springer, 2001.

[24] M. Herlihy and J. M. Wing. Linearizability: A correctness con-
dition for concurrent objects. ACM Trans. Program. Lang. Syst.,
12(3):463-492, 1990.

[25] D. Huang, Q. Liu, Q. Cui, Z. Fang, X. Ma, F. Xu, L. Shen, L. Tang,
Y. Zhou, M. Huang, W. Wei, C. Liu, J. Zhang, J. Li, X. Wu, L. Song,
R. Sun, S. Yu, L. Zhao, N. Cameron, L. Pei, and X. Tang. Tidb: A
raft-based HTAP database. Proc. VLDB Endow., 13(12):3072-3084,
2020.

[26] H. T. Kung and]J. T. Robinson. On optimistic methods for
concurrency control. ACM Trans. Database Syst., 6(2):213-226, 1981.

[27] L. Lamport. Time, clocks, and the ordering of events in a dis-
tributed system. Commun. ACM, 21(7):558-565, 1978.

[28] L. Lamport. How to make a multiprocessor computer that cor-
rectly executes multiprocess programs. [EEE Trans. Computers,
28(9):690-691, 1979.

[29] L. Lamport. Paxos made simple. ACM SIGACT News (Distributed
Computing Column) 32, 4 (Whole Number 121, December 2001), pages
51-58, December 2001.

[30] D. B. Lomet, A. D. Fekete, R. Wang, and P. Ward. Multi-version
concurrency via timestamp range conflict management. In ICDE,
pages 714-725. IEEE Computer Society, 2012.

[31] H. A. Mahmoud, V. Arora, F. Nawab, D. Agrawal, and A. E.
Abbadi. Maat: Effective and scalable coordination of distributed
transactions in the cloud. Proc. VLDB Endow., 7(5):329-340, 2014.

[32] D. L. Mills. A brief history of NTP time: memoirs of an internet
timekeeper. Computer Communication Review, 33(2):9-21, 2003.

[33] H. Moniz, J. Leitdo, R.]J. Dias, J. Gehrke, N. M. Preguiga, and
R. Rodrigues. Blotter: Low latency transactions for geo-replicated
storage. In WWW, pages 263-272. ACM, 2017.

[34] D. Mosberger. Memory consistency models. Operating Systems
Review, 27(1):18-26, 1993.

[35] NetworkLatency. https://wondernetwork.com/pings.

Authorized licensed use limited to: Renmin University. Downloaded on July 09,2023 at 07:19:25 UTC from IEEE Xplore. Restrictions apply.

© 2023 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]

[48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3277969
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

D. Ongaro and J. K. Ousterhout. In search of an understandable
consensus algorithm. In USENIX Annual Technical Conference,
pages 305-319. USENIX Association, 2014.

A.Pavlo and M. Aslett. What's really new with newsql? SIGMOD
Record, 45(2):45-55, 2016.

D. Peng and F. Dabek. Large-scale incremental processing using
distributed transactions and notifications. In OSDI, pages 251-264.
USENIX Association, 2010.

D. P. Reed. Naming and synchronization in a decentralized computer
system. PhD thesis, Massachusetts Institute of Technology, Cam-
bridge, MA, USA, 1978.

K. Ren, D. Li, and D. J. Abadi. SLOG: serializable, low-latency,
geo-replicated transactions. Proc. VLDB Endow., 12(11):1747-1761,
2019.

J. Shute, R. Vingralek, B. Samwel, B. Handy, C. Whipkey, E. Rollins,
M. Oancea, K. Littlefield, D. Menestrina, S. Ellner, J. Cieslewicz,
I. Rae, T. Stancescu, and H. Apte. F1: A distributed SQL database
that scales. Proc. VLDB Endow., 6(11):1068-1079, 2013.

Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional
storage for geo-replicated systems. In SOSP, pages 385-400. ACM,
2011.

A. Szekeres and I. Zhang. Making consistency more consistent:
a unified model for coherence, consistency and isolation. In
PaPoC@EuroSys, pages 7:1-7:8. ACM, 2018.

R. Taft, I. Sharif, A. Matei, N. VanBenschoten, J. Lewis, T. Grieger,
K. Niemi, A. Woods, A. Birzin, R. Poss, P. Bardea, A. Ranade,
B. Darnell, B. Gruneir,]. Jaffray, L. Zhang, and P. Mattis. Cock-
roachdb: The resilient geo-distributed SQL database. In SIGMOD
Conference, pages 1493-1509. ACM, 2020.

A. Thomson, T. Diamond, S. Weng, K. Ren, P. Shao, and D. J.
Abadi. Calvin: fast distributed transactions for partitioned
database systems. In SIGMOD Conference, pages 1-12. ACM, 2012.
TPC-C. http:/ /www.tpc.org/tpec/.

S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. Speedy
transactions in multicore in-memory databases. In SOSP, pages
18-32. ACM, 2013.

M. Tyulenev, A. Schwerin, A. Kamsky, R. Tan, A. Cabral, and
J. Mulrow. Implementation of cluster-wide logical clock and causal
consistency in mongodb. In SIGMOD Conference, pages 636—-650.
ACM, 2019.

P. Viotti and M. Vukolic. Consistency in non-transactional dis-
tributed storage systems. ACM Comput. Surv., 49(1):19:1-19:34,
2016.

X. Wei, R. Chen, H. Chen, Z. Wang, Z. Gong, and B. Zang.
Unifying timestamp with transaction ordering for MVCC with
decentralized scalar timestamp. In NSDI, pages 357-372. USENIX
Association, 2021.

A. X3.135-1992. American national standard for information systems
- Database Language-SQL. American National Standards Institute,
1992.

C. Xie, C. Su, M. Kapritsos, Y. Wang, N. Yaghmazadeh, L. Alvisi,
and P. Mahajan. Salt: Combining ACID and BASE in a distributed
database. In OSDI, pages 495-509. USENIX Association, 2014.

C. Xie, C. Su, C. Littley, L. Alvisi, M. Kapritsos, and Y. Wang. High-
performance ACID via modular concurrency control. In SOSP,
pages 279-294. ACM, 2015.

X. Yu, A. Pavlo, D. Sdnchez, and S. Devadas. Tictoc: Time traveling
optimistic concurrency control. In SIGMOD Conference, pages
1629-1642. ACM, 2016.

X. Yu, Y. Xia, A. Pavlo, D. Sanchez, L. Rudolph, and S. Devadas.
Sundial: Harmonizing concurrency control and caching in a dis-
tributed OLTP database management system. Proc. VLDB Endow.,
11(10):1289-1302, 2018.

Y. Zhang, R. Power, S. Zhou, Y. Sovran, M. K. Aguilera, and J. Li.
Transaction chains: achieving serializability with low latency in
geo-distributed storage systems. In SOSP, pages 276-291. ACM,
2013.

Zhanhao Zhao is currently a Ph.D. student at
the School of Information, Renmin University of
China. His research interests include distributed
database systems and transaction processing.

P —
= -
" J
o

all

Authorized licensed use limited to: Renmin University. Downloaded on July 09,2023 at 07:19:25 UTC from IEEE Xplore. Restrictions apply.

© 2023 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

14

Hongyao Zhao is currently a Ph.D. student at
the School of Information, Renmin University of
China. His research interests include distributed
databases and transaction processing.

Qiyu Zhuang is currently a Ph.D. student at
the School of Information, Renmin University of
China. His research interests include distributed
database systems and transaction processing.

Wei Lu is currently a professor at Renmin Uni-
versity of China. He received his Ph.D. degree
in computer science from Renmin University of
China in 2011. His research interests include
query processing in the context of spatiotempo-
ral, cloud database systems and applications.

Haixiang Li is currently a senior expert at Ten-
cent. His research interests include transac-
tion processing, query optimization, distributed
consistency, high availability, database system
architecture, cloud database and distributed
database systems.

Meihui Zhang is currently a professor in the Bei-
jing Institute of Technology, China. Her research
interests include crowdsourcing-powered data
analytics, massive data integration, and spatio-
temporal databases. She is a member of the
IEEE.

Anqun Pan is a technical director of Tencent
Billing Platform Department, and has more than
15 years of experience in the research and de-
velopment of distributed computing and storage
systems. He is currently responsible for the re-
search and development of distributed database
system (TDSQL).

Xiaoyong Du is a professor at Renmin Uni-
versity of China. He received his Ph.D. degree
from Nagoya Institute of Technology in 1997.
His research focuses on intelligent information
retrieval, high-performance database, and un-
structured data management.

