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Efficiently Supporting Multi-Level Serializability
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Abstract—In decentralized database systems, it is reported that serializability could still produce unexpected transaction orderings,
leading to the stale read anomaly. To eliminate this anomaly, strict serializability imposes an additional ordering constraint, called the
real-time order, which is required to be preserved among serializable transactions. Yet, preserving the real-time order in strict
serializability often causes the performance to drop significantly. Because a weaker data consistency often yields better performance, in
this paper, we model serializability from different consistency perspectives to properly leverage the performance and consistency. To do
this, we first define a group of orderings, based on which we formulate multi-level serializability by preserving a certain set of ordering
constraints among transactions. We then propose a bidirectional timestamp adjustment algorithm (abbreviated as BDTA) to support
multi-level serializability with various optimizations. Our special design makes ordering constraints among transactions be preserved
simply by adjusting timestamp intervals. Finally, we conduct extensive experiments to show the necessity of introducing multi-level
serializability and confirm that BDTA achieves up to 1.19× better performance than the state-of-the-art concurrency control algorithms.
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1 INTRODUCTION

D ECENTRALIZED database systems [37] like Google
Spanner [14], CockroachDB [44], and TiDB [25] have

become increasingly popular to support large-scale web ap-
plications. In these systems, each coordinator individually
coordinates transactions, each of which reads/writes data
from a snapshot using a given timestamp. Due to inconsis-
tent local clocks across coordinators, recent studies [16], [40]
show serializability still produces unexpected transaction
orderings that make transactions read stale data.

Example 1. Consider a user who deposits money via
ATM by submitting transaction T1. To confirm the deposit,
the user subsequently checks the account balance x via an
online banking service by T2. Because T2 starts after T1

is accomplished, the user expects to observe the balance
x written by T1. However, as shown in Fig. 1, T1’s write
cannot be “seen” by T2, leading to a stale read R2(x0) of T2.
The reason is that different coordinators execute T1 and T2

with inconsistent local clocks, i.e., the snapshot (2:01 PM) of
T2 is earlier than the commit timestamp (2:02 PM) of T1.

The real-time order is first introduced in the lineariz-
ability consistency level [7], meaning that if one operation
op1 starts after another operation op2 is accomplished, then
op1’s read must observe op2’ write. Strict serializability [10],
[24], [40] imposes the real-time order on serializability by ex-
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Fig. 1: The execution is serializable. However, due to two
coordinators’ inconsistent local clocks, a stale read anomaly
R2(x0) occurs in T2: reading stale data x0, highlighted in
red. Symbol Wi(xi) represents a write by Ti on version xi

of data item x, Ri(xj) signifies a read by Ti on version xj

written by transaction Tj , and Ci denotes the commit of Ti.

tending the operation granularity to transaction granularity.
Hence, it eliminates the stale read anomaly in serializable
transactions, making T2 observe T1’ write, i.e., read x1, in
Example 1. Thus far, preserving the real-time order can
only be implemented by either (1) timestamp oracle [38]
or (2) TrueTime [14]. When using timestamp oracle, each
transaction is assigned with globally ordered timestamps,
and hence every two transactions are comparable. For this
method, however, obtaining the timestamps suffers from
high network latency overhead and could become a bot-
tleneck [8], [50]. TrueTime requires customized hardware
like atomic clocks to avoid using the timestamp oracle but
incurs expensive blocking overhead (i.e., commit-wait) to
preserve the real-time order. For example, in the commit-
wait scheme, transactions would wait for 4ms to commit,
leading to significant performance degradation.

Often, weaker consistency yields better performance.
Although strict serializability is taken as the strongest con-
sistency level, it is not often supported in decentralized
databases because of its poor performance. In practice, for
better performance, a few newly-found consistency levels,
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with degrees weaker than strict serializability but stronger
than serializability, are proposed. For example, strong ses-
sion serializability [16] integrates session consistency with
serializability, while Lynx [56] imposes read-your-writes
consistency on serializability. However, these consistency
levels are reported on a case-by-case basis, and hence,
they cannot make the trade-off between consistency and
performance to meet users’ requirements. In this paper, we
study the consistency over serializability and above, and
achieve this trade-off by providing a systematic definition
of consistency levels over serializability. We exclude weaker
consistency levels, like snapshot isolation [33], [42], from
our scope, because users often assume serializability is
implicitly guaranteed [6], [20].

Inspired by different consistency models (popularized
by linearizability, sequential consistency [28], causal consis-
tency [27], etc.), we first define a group of orderings among
transactions, including the write-read order, program order,
causal-related order, real-time order, and write-legal order.
We then model multi-level serializability to systematically
formulate consistency: (1) serializability, (2) sequential seri-
alizability, and (3) strict serializability, by preserving these
orders. For instance, sequential serializability is formulated
by preserving the causal-related order and write-legal order.
Besides providing systematic modeling, our ordering-based
formulation of multi-level serializability is self-explanatory.
Informally, given a transaction’s write, serializability does
not ensure it is always “seen” by late transactions; sequential
serializability guarantees that it is always “seen” by some
late transactions (e.g., subsequent transactions in the same
session, ensured by the causal-related order), and strict
serializability guarantees that it is always “seen” by all late
transactions (ensured by the real-time order).

We then propose a novel concurrency control algorithm
called bidirectional timestamp adjustment (abbreviated
as BDTA). Inspired by dynamic timestamp adjustment
(DTA) [31], [54], [55], BDTA introduces a timestamp interval
[LB,UB] for each transaction T . For every two transactions
Ti, Tj with an ordering constraint (e.g., Ti → Tj), we
guarantee that their timestamp intervals are disjoint, i.e.,
Ti.UB < Tj .LB. Any transaction violating the required or-
dering constraint cannot produce a legal timestamp interval
and aborts. We regulate the timestamp allocation scheme in
BDTA to support multi-level serializability. In particular, we
use the timestamp oracle to preserve the real-time order,
and the hybrid logical clock [17] to preserve the causal-
related order. Compared with existing DTA schemes, the
differences of BDTA are two-fold: on one hand, BDTA ad-
justs timestamp intervals by preserving ordering constraints
required in multi-level serializability; on the other hand,
BDTA optimizes the size of the timestamp interval for each
adjustment, leading to a lower transaction abort rate.

In summary, we make the following contributions:
• We systematically formulate multi-level serializability

from different consistency perspectives. We define a group
of orderings among transactions and use these orders to
achieve a unified formulation.

• We design a concurrency control algorithm, called BDTA,
to support multi-level serializability. We propose a heuris-
tic method to adaptively determine the size of the times-
tamp interval for each adjustment, which helps reduce

the abort rate. Our special design makes read-only trans-
actions always commit.

• We conduct extensive experiments to show the necessity
of multi-level serializability. Additionally, we integrate
BDTA and state-of-the-art concurrency control algorithms
into Deneva [22], and results show BDTA achieve up to
1.19× performance gain. We also integrate BDTA into
Greenplum [21] and release our implementation publicly.

2 BACKGROUND
In this section, we briefly introduce the system architecture
of decentralized databases and discuss the state-of-the-art
timestamp allocation schemes.
2.1 Decentralized Database Systems
Decentralized database systems are particularly designed
to support scalable transaction processing. Typically, the
system architecture of transaction processing can be de-
composed into two layers: the coordination layer and the
storage layer. The first layer contains multiple coordinators,
in which each process coordinates incoming transactions
and returns results to users. The second layer consists of
participant servers, each responsible for storing and ma-
nipulating data items. Data items are spread across all
participant servers and are partitioned by a specific strategy
like hash partitioning. Each transaction is coordinated by a
single process in the coordinator. The process decomposes a
transaction into one or multiple local transactions, which are
then distributed to the corresponding participant server(s)
that is/are responsible for managing the data items to be
read/written. These systems always maintain multiple ver-
sions of each data item and adopt multi-version concurrency
control (MVCC) to enable a transaction to read appropriate
versions based on its snapshot.

Most decentralized database systems achieve high avail-
ability and fault tolerance using data replication, im-
plemented using consensus protocols like Paxos [29] or
Raft [36]. In this case, each partition has multiple replicas,
which construct a Paxos/Raft group with one replica chosen
as the leader replica. Because data synchronization among
the replicas based on Paxos/Raft is orthogonal to this paper,
to simplify the discussion, we assume coordinators always
send local transactions to the leader replica of the corre-
sponding partition with the required data items.
2.2 Timestamp Allocation Schemes
In MVCC-based decentralized databases, each transaction
should acquire a unique timestamp and use such a times-
tamp to determine the corresponding consistent snapshot.
Some systems [38] use the timestamp oracle to allocate
globally ordered timestamps. Under such a scheme, each
transaction would communicate with the centralized times-
tamp oracle through the network, which is costly and poten-
tially becomes a performance bottleneck. Recently proposed
systems [44] rely on the hybrid logical clock (HLC) [17]
scheme to achieve consistent snapshot reads. Unlike central-
ized timestamp oracle, HLC allows each process to allocate
timestamps individually, i.e., acquire timestamps in a decen-
tralized manner. Each timestamp allocated by HLC consists
of two parts: (1) physical clock pts [32], which maintains
the local timestamp of that process, and (2) Lamport clock
lts [27], which traces orders among operations through dif-
ferent processes. These systems assign an HLC timestamp
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TABLE 1: Symbols and their meanings
Symbol Definition

Pi i-th process in the coordinator
Hi i-th transaction history
Si i-th transactionally sequential history

Ti → Tj a partial order between Ti and Tj

Ti
i-th transaction is a sequence of operations, which are either
read Ri(xj), write Wi(xi), commit Ci or abort Ai

T s
i the local transaction of Ti in the participant s

Ti.LB/UB the lower bound/upper bound of Ti’s timestamp interval
T s
i .sl the spinlock of Ti

Ti.rs/ws the read set/write set of Ti

Ti.ss the snapshot of Ti

Ti.c the commit timestamp of Ti

x a data item, associated with four fields:
x.pk the primary key of x

x.RTS the maximum Ti.c of the transactions that have read x
x.WT the transaction that is currently modifying x
x.RIDs a list recording non-committed transactions that read x

xi i-th version of the data item x
xi.cts Ti.c of the transaction that writes xi

µi,j
the timestamp interval space for the adjustment between
Ti and Tj

to each transaction and update HLC upon an operation,
i.e., each operation in a transaction will trigger the update
of HLC in that process. Consequently, for the applications
where each transaction has a large number of reads/writes,
frequently updating HLC may hurt the performance. To
alleviate this problem, we propose a strategy to update HLC
once per transaction instead of once per operation (with
more details in Section 4.3).

3 MULTI-LEVEL SERIALIZABILITY MODELING
In this section, we define ordering among transactions,
and systematically formulate multi-level serializability from
different consistency perspectives. Table 1 summarizes the
notations used throughout the paper.

Each transaction, denoted by T , is a sequence of oper-
ations, that are either read Ri(xj), write Wi(xi), commit
Ci or abort Ai. Without loss of generality, we assume each
transaction is separately coordinated by a single process in
the coordinator. Each operation, denoted by op, consists
of an invocation event Inv(op, P ) and a response event
Res(op, P ), where P represents a process in the coordinator.
For simplicity, we omit process P or data item xi when the
context is clear, e.g., Inv(R2(x0), P2) can be simplified by
Inv(R2(x0)).

Following widely adopted terminology defined in [1],
[24], we denote an execution of a set of transactions as a
history. A history, denoted by H , is a finite sequence of
events in transactions. For example, we present history H1

in Fig. 2 that corresponds to the execution of transactions in
Fig. 1. We project a history to the data item level, transaction
level, and process level:
• A data item projection, H|x, of a history H is the sub-

sequence of all invocation and response events in H of
operations executed on data item x.

• A transaction projection, H|T , of a history H is the subse-
quence of all events in H whose operations are from T .

• A process projection, H|P , of a history H is the subsequence
of all events in H coordinating by P .

Definition 1. (Equivalent Histories) Two histories H and
H ′ are equivalent if ∀P , H|P = H ′|P .

For example, history S1 shown in Fig. 3 is equivalent to
H1 by swapping the order T1 and T2 located in P1 and P2

R2(x0) C2

Process P1

Process P2

T0

W0(x0) C0

Inv(W0) Res(W0)History H1 Inv(C0) Res(C0)

T1

W1(x1) C1

Inv(W1) Res(W1) Inv(C1) Res(C1)

T2

Inv(R2)Res(R2)Inv(C2)Res(C2)

(Coordinator N1)

(Coordinator N2) Time
Fig. 2: A history H1 corresponds to Fig. 1.
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T2

Inv(R2)Res(R2)Inv(C2)Res(C2)

(Coordinator N2)

(Coordinator N1)

Time

Fig. 3: An equivalent history S1 to H1.

respectively, from the global clock perspective. A transaction
Ti is said to be well-formed in H if its transaction projection
H|Ti satisfies the following conditions: (1) the first event is
an invocation; (2) each invocation, except the last, is imme-
diately followed by the response of the same operation; (3)
each response, except the last, is immediately followed by
an invocation; (4) no events follow the response of Ci or Ai.
In this paper, we assume that in a history, transactions are
well-formed and finally commit. Besides, we assume each
process P coordinates transaction sequentially, i.e., P only
starts the first event of one transaction after receiving the
response of commit or abort of another transaction.
3.1 Ordering Definitions
Given a history H , and two operations op1, op2 of H , we
define four partial orders between op1 and op2:
Definition 2 (Program Order, ≺pr

H ). op1 ≺pr
H op2 if they are

in the same P and Res(op1, P ) precedes Inv(op2, P ).
Definition 3 (Write-Read Order, ≺wr

H ). op1 ≺wr
H op2 if op2

reads a version written by op1.
Definition 4 (Causal-related Order, ≺cr

H ). op1 ≺cr
H op2 if (a)

op1 ≺pr
H op2 or (b) op1 ≺wr

H op2, or they are related by a
transitive closure leveraging (a) and/or (b).
Definition 5 (Real-time Order, ≺rt

H ). op1 ≺rt
H op2 if

Res(op1, Pi) precedes Inv(op2, Pj), where op1, op2 are from
Pi, Pj , respectively.

Partial orders given in Definition 2–5 are defined in
operation granularity. They are widely used in the concur-
rent system to model linearizability, sequential consistency,
causal consistency, etc. In our case, we make an extension
from operation granularity to transaction granularity.

Given two transactions Ti and Tj in H , we define four
partial orders between Ti and Tj :
• Ti ≺pr

H Tj , if Ti and Tj are in the same process P and the
last event of Ti precedes the first event of Tj .

• Ti ≺wr
H Tj , if there exists an operation op1 in Ti and

another operation op2 in Tj such that op1 ≺wr
H op2.

• Ti ≺cr
H Tj , if (a) Ti ≺pr

H Tj or (b) Ti ≺wr
H Tj , or they are

related by a transitive closure leveraging (a) and/or (b).
• Ti ≺rt

H Tj , if Ti’s last event precedes the first event of Tj .
Definition 6 ((Transactionally) Sequential History). A his-
tory S is (transactionally) sequential if, for any two transac-
tions Ti and Tj in S, either the last event of S|Ti precedes
the first event of S|Tj or the last event of S|Tj precedes the
first event of S|Ti. We denote the order between Ti and Tj

by Ti → Tj if Ti precedes Tj in S.
For brevity, we refer to transactionally sequential history

as sequential history unless otherwise specified.
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Fig. 4: A history H2 and a sequential history S2.

Definition 7 (Write-legal Order). A sequential history pre-
serves the write-legal order if for ∀x, Inv(Rj(xi), Pk) in
S|x immediately comes after Res(Wi(xi), Pl) by removing
events of other read operations in S|x, i.e., roughly, reads of
xi immediately come after the write of xi in S|x.

For example, S1 shown in Fig. 3 is a sequential history,
with T0 ≺pr

H T1, T0 ≺wr
H T2. Besides, S1 preserves the write-

legal order because Inv(R2(x0)) immediately comes after
Res(W0(x0)) in S1|x, indicating the order of S1 is T0 →
T2 → T1. However, H1 does not preserve the write-legal
order since Inv(R2(x0)) does not immediately come after
Res(W0(x0)) in H1|x.
3.2 Multi-level Serializability
By selectively imposing orders on sequential history, we
model multi-level serializability below. Given two histories
H and S, ≺cr

H⊆≺cr
S means that ∀Ti, Tj , if Ti ≺cr

H Tj , then
Ti ≺cr

S Tj (this is also applicable to other orders).
Definition 8 (Multi-level Serializability).
• Serializability. A history H ensures serializability if there

is a sequential history SH , which preserves the write-legal
order, with ∀T , SH |T = H|T and ≺wr

H ⊆≺wr
SH

.
• Sequential Serializability. H guarantees sequential seri-

alizability if H is equivalent to a sequential history SH ,
which preserves the write-legal order, with ≺cr

H⊆≺cr
SH

.
• Strict Serializability. H ensures strict serializability if H

is equivalent to a sequential history SH , which preserves
the write-legal order, with ≺cr

H⊆≺cr
SH

and ≺rt
H⊆≺rt

SH
.

Informally, the execution of H is said to satisfy (1) serial-
izability when there exists a sequential history SH preserv-
ing the write-read order and write-legal order, (2) sequential
serializability when an equivalent sequential history SH

to H preserves the causal-related order and write-legal
order, (3) strict serializability when an equivalent sequential
history SH to H preserves the real-time order, causal-related
order, and write-legal order. Take H1, shown in Fig. 2, for
example. H1 satisfies sequential serializability because H1

is equivalent to S1 shown in Fig. 3, which is a sequential
history preserving the write-legal order, with ≺cr

H1
⊆≺cr

S1
. As-

sume T2 reads x1 instead of x0 in H1, i.e., R2(x1), H1 would
satisfy strict serializability. On the contrary, consider history
H2 shown in Fig. 4(a). H2 does not preserve the write-
legal order. We can find a sequential history S2 (shown
in Fig. 4(b)) to H2, which preserve the write legal order,
with ∀T ∈ H2, H2|T = S2|T and ≺wr

H2
⊆ ≺wr

S2
. Thus,

H2 is serializable but not sequentially serializable because
T3 ≺pr

H2
T4 is not preserved in S2.

In essence, we model multi-level serializability by com-
bining serializability with the consistency model, including
linearizability and sequential consistency. In the following,

P2 T1

C1

C3
P3 T3

P1
C2

T2

R2(y0)

W1(x1)

R3(x0) W3(y3)

R1(x0)

R3(y0)

Steps to construct a sequential history S3 for H3

T2 T4Program Order

Write-Legal Order
T2 T1

T1 T4Write-Read Order

T1 Commits T1

T2 Commits T1T2

T4 Commits T2 T1 T4

T3 Commits T2 T3 T1 T4

T2 T3

C4

T4

R4(x1)History H3 R2(x0)

T3 T1

Fig. 5: An example of dynamic ordering using BDTA.

we theoretically show that the combination of serializability
with causal consistency and consistency below it can be
reduced to sequential serializability.
Theorem 1. Imposing causal consistency and consistency below
it on serializability can be reduced to sequential serializability.

Proof. As mentioned in [34], causal consistency and weaker
consistency levels, like read-your-write consistency, cannot
preserve a total order of operations, leading to different
processes observing conflict orders, e.g., Ti → Tj observed
from the process P1 and Tj → Ti observed from P2.
Since serializability imposes a total order of transactions,
imposing causal consistency or weaker consistency levels
on serializability is reduced to sequential serializability.

4 CONCURRENCY CONTROL ALGORITHM
In this section, we give an overview of BDTA to sup-
port multi-level serializability and elaborate on how BDTA
works correctly in decentralized MVCC-based databases.

4.1 An Overview of BDTA
The basic idea of BDTA is to preserve required orders
defined in multi-level serializability during the transaction
execution. To start, we give an example to show how BDTA
preserves required orders under serializability.

Example 2. Consider history H3 shown on the top part
of Fig. 5. For reference, we list all orders required in serializ-
ability. We present how to construct S3 during the execution,
where S3 is a sequential history that preserves the write-
legal order of H3, with ∀T , S3|T = H3|T and ≺wr

H3
⊆≺wr

S3
.

From the global clock perspective, T1 first commits, and
we set T1 as the first transaction in S3. T2 then commits.
Theoretically, T2 can be ordered before T1 or after T1 in
S3. BDTA orders T2 before T1 by detecting the write-legal
order T2 → T1. Next, T4 commits and is ordered after T1

in S3 because of the write-read order T1 → T4. Finally,
T3 commits. Due to the write-legal orders T3 → T1 and
T2 → T3, T3 can only be ordered between T2 and T1 in S3.
In conclusion, S3 is shown at the bottom part of Fig. 5, with
the order as T2 → T3 → T1 → T4.

Different from other concurrency control algorithms, like
T/O, or 2PL, that order transactions statically (e.g., T/O
orders transactions based on their start timestamps), BDTA
orders transactions dynamically, and hence possibly leads to
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Fig. 6: An example of bidirectional timestamp adjustment.

a lower transaction abort rate. As we can see from Example
2, by using BDTA, T2 is ordered before T1 and can commit
successfully, while by using T/O, T2 is ordered after T1 and
should abort. BDTA relies on timestamp intervals to order
transactions dynamically. Inspired by the DTA scheme [9],
[30], we introduce a timestamp interval [LB,UB] for each
transaction T , For every two transactions Ti, Tj , during the
entire execution, we guarantee that:

Ti.UB < Tj .LB if Ti → Tj (1)
Eq. 1 ensures that, for any two transactions Ti and Tj , if
there exists a partial order Ti → Tj , we have Ti.UB <
Tj .LB, i.e., ordering Ti before Tj in the sequential history.
Any transaction violating the required ordering constraint
cannot produce a legal timestamp interval and aborts. We
then give an example to show how BDTA preserves required
orders by adjusting the timestamp intervals of transactions.

Example 3. Reconsider H3 in Example 2. We present how
the timestamp intervals are adjusted in Fig. 6. From the
global clock perspective, T1 first starts, followed by T2, T3,
and T4. First, when T3 starts, the timestamp intervals of T1,
T2, and T3 are shown in the first column. Next, when T1

commits, we can detect the write-legal orders (T2 → T1

and T3 → T1) and bidirectionally adjust the timestamp
intervals of T2 and T3 with T1, making T2.UB < T1.LB and
T3.UB < T1.LB (second column). Then, when T2 commits,
because we cannot detect the write-legal order T2 → T3 and
the program order T2 → T4, we do not perform the adjust-
ment of T2 with other transactions but simply set T2.UB to
T2.LB (third column). Afterward, when T4 starts, by detect-
ing program order T2 → T4, we adjust T4.LB to guarantee
T4.LB > T2.UB (fourth column). When T4 commits, we
adjust T4.LB to guarantee T4.LB > T1.UB because of the
write-read order T1 → T4 (fifth column). Finally, when T3

commits, we detect write-legal order T2 → T3 and adjust
T3.LB to guarantee T3.LB > T2.UB (sixth column).

As illustrated in Example 3, we preserve the partial
orders required in sequential history S3 by adjusting times-
tamp intervals of transactions. We must emphasize that
BDTA is different from existing DTA algorithms, like Sun-
dial [55], MaaT [31], TCM [30]. First and foremost, BDTA
adjusts timestamp intervals to preserve required orders in
multi-level serializability. Second, BDTA optimizes the size
of the timestamp interval for each adjustment, leading to a
lower transaction abort rate. Take history H3 as an example.
As discussed, the order T2 → T3 → T1 needs to be pre-
served. However, existing DTA algorithms cannot preserve
such an order, causing T2 or T3 to abort. Specifically, Sundial
and MaaT do not have the capability to adjust timestamp
intervals bidirectionally, meaning that if there exists an order
Ti → Tj , when Ti or Tj commits, the timestamp interval of

Ti or Tj is adjusted individually. For this reason, when T1

commits, they set T1.UB = T1.LB without adjusting T2.LB
and T2.UB. In Fig. 6, T2 starts after T1, indicating T2.UB ≥
T2.LB > T1.LB. When T2 attempts to commit, due to the
write-legal order T2 → T1, there does not exist a legal
timestamp interval of T2 to guarantee T2.UB < T1.LB,
causing T2 to abort. For TCM, although it performs the bidi-
rectional adjustment, its adjustment cannot leave enough
legal interval space for transactions to commit. For example,
to preserve T2 → T1, TCM sets T1.LB = T2.LB + 1 and
T2.UB = T2.LB to make T2.UB < T1.LB. However, by
doing this, there does not exist any interval space between
T2.UB and T1.LB, and any transaction ordered between T2

and T1, like T3 will abort. BDTA solves the interval space
problem of TCM by introducing an adaptive timestamp
interval selection method, which is discussed in Section 5.1.

According to Definition 8, if a transaction violates the or-
dering constraints, the corresponding history must contain
a cycle of partial orders. BDTA ensures such a transaction
cannot produce a legal timestamp interval:
Theorem 2. Given a set of transactions in the history that form
a cycle of partial orders, there must exist at least one transaction
T with T.LB > T.UB.
Proof. If a history H contains a cycle of partial orders, there
must exist the order Ti → Tj → ... → Ti. Suppose each
transaction T in the history H satisfies T.LB ≤ T.UB,
According to Eq. 1, we ensure Ti.UB < Tj .LB ≤ Tj .UB <
Ti.LB, which indicates Ti.UB < Ti.LB. Therefore, Ti

cannot obtain a legal timestamp interval, and the history
H containing a cycle of partial orders must include a trans-
action like Ti with Ti.LB > Ti.UB.

Theorem 2 guarantees that, during the entire execution,
if a given set of transactions forms a cycle of partial orders,
we can abort the transactions with illegal timestamp inter-
vals to destroy the cycle and ensure correctness.
4.2 BDTA in Action
We elaborate on how BDTA works in decentralized MVCC-
based databases, especially when and how timestamp in-
tervals of transactions are initialized and adjusted. BDTA
follows the optimistic way to do concurrency control. For
this purpose, the process Pk coordinates the entire lifecycle
of a transaction Ti from the initialization, through the local
execution, to the validation and commit.
• Initialization. The process Pk creates an execution context

for Ti, including transaction snapshot Ti.ss, timestamp
interval [LB,UB], and commit timestamp Ti.c, etc. Be-
cause we target MVCC-based databases, we process read
requests based on snapshot isolation, i.e., Ti does reads
and writes based on the snapshot Ti.ss. For this reason,
Ti.ss is initialized below:

Ti.ss =


GET LC() serializability,
GET HLC() sequential serializability,
TS ORACLE() strict serializability

(2)

Function GET LC() returns the local timestamp of
the process Pk and is used for serializability. Func-
tion GET HLC(), shown in Alg. 1, returns an HLC
timestamp, which is used for sequential serializability.
Note that HLC timestamps of two transactions with the
causal-related order are pairwise comparable. Function
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Fig. 7: Timestamp interval adjustment for Example 3.

TIME ORACLE() returns the current global timestamp al-
located from a centralized timestamp oracle [38] and is
used for strict serializability. [LB,UB] of Ti is initialized:

Ti.LB = Ti.ss, Ti.UB = +∞ (3)

[LB,UB] of Ti will be dynamically adjusted during the
local execution and validation. Given a distributed trans-
action Ti, we denote the set of participant servers that
are involved in the execution of Ti as S(Ti), and denote
the local transaction executed in the participant server
s ∈ S(Ti) as T s

i . We do the initialization for T s
i below.

T s
i .ss = Ti.ss, T

s
i .LB = Ti.LB, T s

i .UB = Ti.UB (4)

• Local execution. Local transaction T s
i of Ti is executed in

participant server s respectively. We now present how to
adjust [LB,UB] of T s

i to preserve the write-legal order
during the local execution. Upon a read Ri(xm) by T s

i ,
if BDTA detects that a new version xm+1 is generated
by another committed transaction Tm+1, the timestamp
interval of T s

i is adjusted below:

T s
i .UB = xm+1.cts− 1 (5)

where xm+1.cts is the commit timestamp of Tm+1, de-
noted as Tm+1.c (version xm+1 is written by Tm+1

that takes the same subscripts). Note that if the write
Wm+1(xm+1) happens after Ri(xm) from the global clock
perspective, the write-legal order is guaranteed during the
local validation of T s

m+1. Besides, we preserve the write-
read order based on snapshot isolation. Because for each
data item xm, only T s

i with T s
i .ss ≥ xm.cts can “see” xm,

which guarantees the write-read order Tm → Ti. We will
elaborate on the local execution in Section 4.4.

• Validation. After completing local execution, the process
Pk coordinates all local transactions T s

i following two-
phase commit (2PC). To begin with, in the first phase of
2PC, called the prepare phase, each local transaction does
the local validation and determines a proper [LB,UB]
of T s

i . To preserve the write-legal order, we examine the
write set T s

i .ws of T s
i and adjust T s

i .LB:

T s
i .LB =max{T s

i .LB,

max {x.RTS + 1|x ∈ T s
i .ws}}

(6)

where x.RTS is the maximum commit timestamp of all
committed transactions that ever read data item x. We
then adjust the timestamp intervals of T s

i and T s
j bidirec-

tionally, i.e., we identify every concurrent transaction T s
j

that reads data item x ∈ T s
i .ws, and adjust T s

i .LB:

T s
i .LB =max{T s

i .LB,

max {T s
j .LB + µj,i|T s

i .ws ∩ T s
j .rs ̸= ∅}}

(7)

where µj,i represents the interval space for the bidirec-
tional adjustment. Finally, we adjust T s

j .UB of every T s
j :

T s
j .UB = min {T s

j .UB, T s
i .LB − 1} (8)

Reconsider Example 3. As shown in Fig. 7, during the
validation of T s

1 , by examining the write set of T s
1 , BDTA

identifies transactions T s
2 and T s

3 that read the data item
x, and hence bidirectionally adjusts T s

1 .LB and T s
2 .UB

(T s
1 .LB and T s

3 .UB) to preserve the write-legal order
T2 → T1 (T3 → T1). To achieve this, we first set T s

1 .LB
to max{T s

2 .LB + µ2,1, T
s
3 .LB + µ3,1} based on Eq. 7 and

then set T s
2 .UB and T s

3 .UB to T s
1 .LB − 1 based on Eq. 8.

• Commit. After all local transactions finish the validation
phase, Ti comes to the second phase of 2PC named
as commit phase. In the commit phase, the process Pk

collects [LB,UB] of T s
i from each participant server

s ∈ S(Ti) and updates [LB,UB] of Ti based on Eq. 9. If
Ti.LB > Ti.UB, Pk notifies each participant to abort the
local transaction; otherwise, Pk notifies each participant
server to commit the local transaction.

Ti.LB = max{T s
i .LB|s ∈ S(Ti)}

Ti.UB = min{T s
i .UB|s ∈ S(Ti)}

(9)

Finally, the commit timestamp of Ti is set below.

Ti.c = Ti.LB (10)

Using Eq. 10, we guarantee the order of transactions’
commit timestamps follows that determined by BDTA. We
will elaborate on the validation and commit in Section 4.5.

4.3 Multi-level Serializability Guarantee
BDTA preserves orders among serializable transactions by
maintaining disjoint timestamp intervals.
Theorem 3. Given a history H , BDTA guarantees the execution
of H satisfies serializability.

Proof. Given any transaction Ti in H , for local transaction
T s
i in each participant server s ∈ S(Ti), BDTA guarantees

there exists a sequential history H preserving the write-
legal order (Eq. 5–8), with H|T s

i = H|T s
i . Besides, due to

snapshot isolation, we ensure the write-read order in H .
Thus, according to Definition 8, BDTA achieves serializabil-
ity in each participant server. Further, by imposing 2PC on
∀s ∈ S(Ti) to make an agreement on [LB,UB] of Ti (Eq. 9),
plus Eq. 10, we guarantee that H satisfies serializability.

Theorem 3 guarantees a serializable execution using
BDTA. We now discuss how BDTA guarantees strict seri-
alizability and sequential serializability, respectively.
• Strict serializability guarantee. We additionally pre-
serve the real-time order based on TIME ORACLE(). In
fact, when Ti commits, if Ti.LB ≤ TIME ORACLE(), the
real-time order is preserved by Eq. 10, ensuring Ti.c ≤
TIME ORACLE(). By so doing, a new transaction Tj start-
ing after Ti’s commit will have Tj .ss ≥ TIME ORACLE(),
and hence, Tj can always “see” Ti’s writes. Otherwise, if
Ti.LB >TIME ORACLE(), to preserve the real-time order, Ti

waits until Ti.LB ≤TIME ORACLE() to commit. Thus, under
strict serializability, we introduce an additional constraint
for Ti to commit, as shown below.

Ti.LB ≤ TIME ORACLE() (11)

• Sequential serializability guarantee. We preserve the
causal-related order based on HLC [17]. We implement
HLC by allowing each process to allocate timestamps in-
dividually. We must emphasize that for each transaction,
BDTA updates HLC only once. Alg. 1 describes the HLC
timestamp allocation, while Alg. 2 presents the HLC update
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Fig. 8: An example of allocating HLC timestamps.

upon Ti commit using Ti.c.pts and Ti.c.lts. Note that ptsk
and ltsk denote the physical clock pts and Lamport clock
lts of the process Pk, respectively. Reconsider Example 3.
As shown in Fig. 8, upon the commit of T1, T1.c is set to
⟨2:02, µ2.1⟩, larger than T2.LB, ⟨2:02, 0⟩. The process P2 up-
dates its HLC timestamp using T1.c. T2 then commits with
T2.LB. All subsequent transactions in the processP2, e.g.,
T4, take larger HLC timestamps than T2.c. Our transaction-
level HLC scheme preserves the causal-related order. For
example, since T4.ss is larger than T2.c and T1.c, all writes
seen by T2 and T1 can also be seen by T4, preserving the
causal-related orders T2 → T4 and T1 → T4.

Algorithm 1: GET HLC() [17]
1 if ptsk ≥ current process timestamp then ltsk++;
2 else ptsk ← current process timestamp, ltsk ← 0;
3 return ⟨ptsk, ltsk⟩;

Algorithm 2: UPDATE HLC(pts, lts) [17]
1 temp← ptsk;
2 ptsk ← max{ptsk, pts, current process timestamp};
3 if ptsk = temp and ptsk = pts then

ltsk ← max{ltsk, lts}+ 1 ;
4 else if ptsk = temp then ltsk ++ ;
5 else if ptsk = pts then ltsk ← lts++ ;
6 else ltsk ← 0 ;

• Summarization. To summarize BDTA, the adjustment is
triggered by a transaction Ti upon either (1) CONDITION 1:
Ti reads a version xm, and a new version xm+1 is generated
by a committed Tm+1 before Ti’s read, or (2) CONDITION
2: Ti enters the validation phase. CONDITION 1, 2 are used
to preserve the write-legal order, and CONDITION 1 plus
snapshot isolation preserves the write-read order.

4.4 Local Execution
We present how local execution in BDTA works. In our
design, a data item x is associated with metadata that
has four fields (shown in Fig. 9): (1) x.pk is the primary
key of x; (2) x.RTS is the maximum commit timestamp
of all committed transactions that ever read x; (3) x.WT
is the transaction that is currently modifying x. It is set
during the validation, and acts like a “soft-lock” to prevent
write-write conflicts, i.e., two transactions are disallowed
to modify x simultaneously; (4) x.RIDs is a lock-free list,
recording every non-committed transaction that reads x.
Like many optimistic algorithms, we maintain the read set
T s
i .rs and write set T s

i .ws of T s
i . To enable exclusive access

to [LB,UB] of T s
i , we provide a spinlock T s

i .sl, and any
access to [LB,UB] of T s

i must hold the lock.
Alg. 3 shows the pseudo-code of Read() and Write()

functions. Read() takes a local transaction T s
i and a search

key key as the input (line 1). We directly return xi if it
is already in T s

i .ws (line 2). Otherwise, we add key to

Participant s1

y T0.c

RIDsWT

Read y0

x
T0.cx0

T0.cy0

Status of data items after R2(y0)

RTS

y T0.c

RIDsWT
x

T1.cx1

T0.cy0

T0.cx0

RTS

Status of data items after C1

T0.c
Commit

T1.c
s1T2

s1

T1, T2, T3
s1 s1 s1

T2

T1, T2, T3
s1 s1 s1

s1T2

s1T1
s1T1

Fig. 9: Status of data items using BDTA.

T s
i .rs (line 3), find x, and update x.RIDs by adding T s

i

(lines 4–5). We next invoke SnapshotRead() to read a
proper version xm and its next version xm+1 (if any) (line
6). In SnapshotRead(), if we detect (1) some T s

j in the
validation phase is writing x (i.e., x.WT = T s

j ), and (2)
xm is the latest version while xj is not visible yet (the
order between T s

i and T s
j remains undetermined), we do not

read x until T s
j commits to guarantee correctness. If xm+1

exists, we then adjust T s
i .UB based on Eq. 5 by holding

the lock T s
i .sl (lines 7–10). Finally, xm is returned (line 11).

Function Write() takes a local transaction T s
i , x’s primary

key x.pk, and a new version xi to be written as the input. If
a version x′

i with the same x.pk is in T s
i .ws, x′

i is updated
by xi; otherwise, a pair ⟨x.pk, xi⟩ is added into T s

i .ws.

Algorithm 3: Execution of local transaction T s
i

1 Function Read(T s
i , key):

2 if ⟨key, xi⟩ ∈ T s
i .ws then return xi;

3 T s
i .rs← T s

i .rs ∪ {key};
4 x← location the data item according to key;
5 x.RIDs← x.RIDs ∪ {T s

i };
6 xm, xm+1 ← SnapshotRead(key, T s

i .ss);
7 if xm+1 then
8 # lock() acquires the spinlock T s

i .sl
9 T s

i .UB ← min{T s
i .UB, xm+1.cts− 1};

10 # unlock() releases the spinlock T s
i .sl

11 return xm;

12 Function Write(T s
i ,x.pk, xi):

13 if ⟨x.pk, x′
i⟩ /∈ T s

i .ws then
T s
i .ws← T s

i .ws ∪ {⟨x.pk, xi⟩};
14 else replace ⟨x.pk, x′

i⟩ with ⟨x.pk, xi⟩ in T s
i .ws;

Example 4. In reference to Fig. 5 and Fig. 6, let us recon-
sider the history H3. T1 first starts and executes R1(x0), dur-
ing which we store x.pk into T1.rs, insert T s

1 into x.RIDs,
and read the proper version x0. T1 then executes W1(x1) to
store ⟨x.pk, x′

1⟩ into T1.ws. After that, T2 and T3 perform
R2(x0), R3(x0) and R2(y0) using the same logic as R1(x0),
described in Alg. 3. Now we have x.RIDs = {T s

1 , T
s
2 , T

s
3 }

and y.RIDs = T s
2 , as shown in the left part of Fig. 9.

4.5 Validation and Commit
We introduce the validation of a local transaction T s

i in
Alg. 4. ∀xi ∈ T s

i .ws, we set a soft-lock on x by T s
i using

compare-and-swap (lines 2–4). If a write-write conflict on
x is detected, we abort T s

i . Next, by invoking the function
BiAdjust(), we bidirectionally adjust the timestamp in-
tervals of T s

i with transactions in x.RIDs based on Eq. 6–8
(line 5). We then adjust T s

i .LB to preserve the write-read
order (line 7). We abort T s

i if its timestamp interval is illegal
(line 9); otherwise, the validation of T s

i is passed (line 10).
We present the commit of a local transaction T s

i in Alg. 5.
We encapsulate the local validation in the prepare phase
of 2PC, and once the validation phase of Ti completes
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successfully, the process Pk coordinates T s
i to commit by

writing data items to the database, updating x.RTS, and
releasing the “soft lock” (setting x.WT to 0, lines 2–5).
Besides, for each key ∈ T s

i .rs, we update x.RTS by the
commit timestamp of Ti using atomic read-modify-write
(RMW), and remove T s

i from the read list x.RIDs (lines
6–8). If Ti’s validation fails, the process Pk coordinates T s

i

to abort by resetting x.WT and removing T s
i from x.RIDs.

Handling contentions on list x.RIDs. We use a lock-free
list [23] to implement x.RIDs (line 12, Alg. 4) for better
performance. It is unnecessary to acquire locks on x.RIDs,
and the reasons are two-fold. First, setting x.WT to T s

i

during the validation phase of the transaction Ti (line 3,
Alg. 4) blocks other transactions to read the current version
of x (line 6, Alg. 3). Second, for transactions that read pre-
vious versions of x but are not in x.RIDs, their timestamp
intervals are adjusted in line 9, Alg. 3.

Algorithm 4: Validation of local transaction T s
i

1 Function Validation(T s
i ):

2 for ⟨x.pk, xi⟩ ∈ T s
i .ws do

3 if x.WT ̸= T s
i and¬ CAS(x.WT, 0, T s

i ) then
4 return false;

5 BiAdjust(T s
i ,x);

6 # lock() acquires the spinlock T s
i .sl

7 T s
i .LB ← max{T s

i .LB, x.RTS + 1};
8 # unlock() releases the spinlock T s

i .sl
9 if T s

i .LB > T s
i .UB then return false ;

10 return true;

11 Function BiAdjust(T s
i , x):

12 for T s
j ∈ x.RIDs do

13 # lock() acquires the spinlocks T s
i .sl,T s

j .sl by the
order Ti → Tj

14 if T s
j has been local validated then

15 wait until Commit(T s
j ,Tj .c) finishes or

timeouts;
16 continue;

17 if T s
i .LB ≤ T s

j .LB then
18 T s

i .LB ← T s
j .LB + µj,i;

19 T s
j .UB ← min{T s

j .UB, T s
i .LB − 1};

20 # unlock() releases the spinlocks T s
i .sl,T s

j .sl by
the order Ti → Tj

Algorithm 5: Commit of local transaction T s
i

1 Function Commit(T s
i , Ti.c):

2 for ⟨x.pk, xi⟩ ∈ T s
i .ws do

3 make xi visible in the database;
4 x.RTS ← max{x.RTS, Ti.c} ;
5 # atomic RMW x.WT ← 0;

6 for key ∈ T s
i .rs do

7 x.RTS ← max{x.RTS, Ti.c} ;
8 # atomic RMW x.RIDs← x.RIDs \ {T s

i };

9 Function Abort(T s
i ):

10 for ⟨x.pk, xi⟩ ∈ T s
i .ws do CAS(x.WT, T s

i , 0) ;
11 for key ∈ T s

i .rs do x.RIDs← x.RIDs \ {T s
i } ;

Example 5. Let us continue Example 4 to validate
whether T1 can commit. We set x.WT to T s

1 , adjust T s
1 .LB

to ensure T s
1 .LB > x.RTS, and bidirectionally adjust the

timestamp intervals of T s
1 and transactions in x.RIDs (T s

2

and T s
3 ). Because of the order T2 → T1 and T3 → T1, we

…
ln1 ln2 0

RIDsRTS WT
0 ∅→T1

a z

a c

a e

d e 0 0 ∅→T1

ln1

ln2

B -tree Index+

Fig. 10: Status of a B+-tree in BDTA.

adjust T s
1 .LB to max(T s

2 .LB + µ2,1, T
s
3 .LB + µ3,1, T

s
1 .LB).

We also set T s
2 .UB and T s

3 .UB to T s
1 .LB − 1. We calculate

T1.LB based on T s
1 .LB as discussed in Eq. 9, and then

commit T1 with T1.c = T1.LB. Besides, we update x.RTS
to T1.c, reset x.WT to 0, remove T s

1 from x.RIDs, and
write version x1 to the data item x, according to Alg. 5.
The status of data items is shown in the right part of Fig. 9.
Next, T2 commits with T2.c = T2.LB, removes T s

2 from
x.RIDs and y.RIDs, and updates y.RTS to T2.c. After
that, T4 then reads x1 and commits, and hence, T4.c is
larger than T1.c. Finally, T3 executes R3(y0) and W3(y3),
and start to commit. During the validation, T3 acquires
y.WT , adjusts T3.LB to y.RTS+1 (T2.c+1), and examines
whether T3.UB > T3.LB. Because we introduce the adap-
tive timestamp interval selection method, µ2,1 and µ3,1 are
larger enough to obtain a legal timestamp interval for T3,
and therefore, T3 can commit successfully. We follow Alg. 5
to commit T3 and write version y3 into y.

4.6 Preventing Phantom Reads
We present how BDTA handles the phantom read, which
occurs when one transaction issues a predicate-based read
twice but obtains two different read sets. Given two con-
current transactions T1, T2, T1’s snapshot T1.ss might be
larger than T2’s commit timestamp due to inconsistent local
clocks. When T1 triggers a predicate-based read through
the index, it may observe T2’s write after T2 commits,
leading to the phantom read. We handle the phantom read
by encapsulating BDTA into the index scheme. Without
loss of generality, we assume predicate-based reads can be
regarded as traversing the B+-tree index. We treat each leaf
node of the index as a data item, and we associate each leaf
node (denoted as ln) of the index with metadata ln.RTS,
ln.WT , and ln.RIDs similar to the data item (Fig. 9).
Because a predicate-based read needs to access leaf nodes
of the index, and a write needs to update a leaf node, we
then preserve the write-read order and write-legal order
over the leaf nodes. Consider two concurrent transactions
T1 and T2. T1 has a predicate-based read to search keys in
the range [a, d]. As shown in Fig. 10, T1 needs to access
leaf nodes ln1 and ln2, and T1 is added to ln1.RIDs and
ln2.RIDs. Afterward, suppose that T2 writes the index key
b to the leaf node ln1 and commits. BDTA preserves the
write-legal order T1 → T2 by ensuring T1.UB < T2.LB.
Since T1.ss < T2.c is preserved, T1 cannot observe the index
key b. In this way, the phantom read is eliminated by BDTA.

5 OPTIMIZATIONS
In this section, we introduce a heuristic method to adap-
tively determine the size of the timestamp interval for
each adjustment and explain how BDTA makes read-only
transactions always commit.

5.1 Adaptive Timestamp Interval Selection
As discussed in Section 4.1, selecting a good timestamp
interval size is essential to reduce the transaction abort
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rate. Reconsider Example 3. If no interval space exists
between T2.LB and T1.LB, transactions ordered between
T2 and T1 (e.g., T3) would abort. Given any two transac-
tions Ti and Tj with order constraint Ti → Tj , we use
µi,j to denote the interval space [Ti.LB, Tj .LB] between
Ti and Tj , i.e., µi,j = Tj .LB − Ti.LB. Theoretically, a
proper µi,j should meet the following two requirements.
First, we require µi,j > Ni,j , where Ni,j is the number
of transactions ordered between Ti and Tj . By so doing,
transactions ordered between Ti and Tj are more likely to
find a legal timestamp interval and commit. Second, we
need µi,j ≤ Tk.UB − Ti.UB, where Tk is the transaction
with the smallest UB among transactions ordered after Tj .
This property ensures transactions ordered after Tj will not
be influenced by µi,j . Otherwise, if µi,j > Tk.UB − Ti.UB,
Tj .LB = Ti.UB + µi,j can be larger than Tk.UB, causing
transactions ordered after Tj (e.g., Tk) to abort.

Yet, computation of the best µi,j for any two transactions
Ti and Tj with constraint Ti → Tj is infeasible because
we cannot obtain the precise value of Ni,j and detect Tk

in advance. For this reason, we instead propose a heuristic
method to adaptively estimate µi,j based on the contention
level of the data items Ti and Tj accessed. For each data item
x, we collect the number of calls in bidirectional adjustment
(x.cno) to represent the contention level on x, denoted as
L(x). Recall that during the validation phase of Tj , for
each x ∈ T s

j .ws, we use µi,j to bidirectionally adjust the
timestamp intervals of T s

j and any other T s
i in x.RIDs (line

18, Alg. 4). Consequently, a higher contention level L(x)
indicates more transactions are likely to be ordered between
Ti and Tj , which requires µi,j to be positively correlated
with L(x), i.e., the higher L(x) is, the larger µi,j should be
assigned. We classify L(x) into three contention levels: low,
medium, and high contention, by simply comparing x.cno
with two pre-defined thresholds τ1 and τ2. Besides, we
assign µl, µm, and µh for each contention level to represent
the optimal timestamp interval space of that contention
level, as shown in Eq. 12.

µi,j =


µl x.cno ≤ τ1 low contention,
µm τ1 < x.cno ≤ τ2 medium contention,
µh τ2 ≤ x.cno high contention

(12)

We adaptively refine these interval spaces during the
execution based on Alg. 6. Initially, µl, µm, µh are set to 1.
Then, we create an individual thread and periodically refine
them using Alg. 6, which is constructed based on the well-
known simulated annealing (SA) algorithm. We take the
timestamp interval to be adjusted µk, µk ∈ {µl, µm, µh},
and the temperature threshold Tmin as the input. We denote
F(µk) as the abort rate after applying µk. After initialization
(line 2), we iteratively select a random µ̂ (line 4) and examine
whether adopting µ̂ can reduce the abort rate. If the abort
rate drops, we update µk = µ̂; otherwise, we accept µ̂
with a certain probability (lines 6–8). The probability follows
the Boltzmann distribution by examining e−∆t/cT and a
random value seed ∈ (0, 1), where c is Boltzmann constant
(line 6). For each iteration, temperature T is decreased to
λ · T , where λ is a hyper-parameter and set to 0.6 by default
(line 9). We terminate the iteration and output µk if T is
decreased to the temperature threshold Tmin (line 10).

5.2 Non-validation for Read-only Transactions
We observe in BDTA, the timestamp interval of every read-
only transaction Ti is always legal, i.e., Ti.LB ≤ Ti.UB is
guaranteed. The reason is that according to Eq. 5–8, Ti.LB =
Ti.ss and Ti.ss < Ti.UB are always true. Thus, we skip the
validation in this case and replace the costly 2PC with one
phase commit for read-only transactions.

Algorithm 6: Adjust timestamp interval µk

1 Function AdaptiveAdjust(µk, Tmin):
2 Initialize F∗ ← F(µk), T ;
3 while T > Tmin do
4 Generate a random timestamp interval µ̂;
5 ∆t← F(µ̂)−F∗ ;
6 if ∆t < 0 or (∆t ≥ 0 and e−∆t/cT > seed) then
7 F∗ ← F(µ̂);
8 µk ← µ̂ ;

9 T ← λ · T ;

10 return µk;

6 IMPLEMENTATION
In this section, we present our prototype system by integrat-
ing BDTA into Greenplum. Greenplum [21] is a distributed
database system technically built on top of PostgreSQL. It
has a single coordinator (master) and several participant
servers (segments). Each master/participant server runs a
PostgreSQL instance. To integrate BDTA into Greenplum,
we make the following extensions, and our implementation
is publicly available via https://github.com/dbiir/BDTA.
• Storage Engine. We re-construct the storage layer from

the traditional heap store to the key-value store using
RocksDB. We then implement data partitioning based on
the hash strategy.

• Multi-coordinator architecture. We extend Greenplum to
support multi-coordinator architecture. In this extension,
each coordinator runs a PostgreSQL instance, in which
each process coordinates transactions individually.

• Timestamp Allocation. We implement timestamp oracle
and HLC as discussed to assign timestamps. To ensure
high available timestamp allocation, timestamp oracle is
implemented as a raft-based service. In our implementa-
tion, timestamp oracle serves around ten million times-
tamps per second. The performance may be influenced by
high network latency over a WAN network.

• Concurrency Control. We integrate BDTA into Green-
plum to support multi-level serializability. First, we re-
place the globally shared snapshot to avoid costly dead-
lock detection by our timestamp allocation schemes. We
then encapsulate the validation phase and commit phase
into 2PC. To accommodate BDTA in Greenplum, we main-
tain read/write sets of transactions in segments to reduce
the communication overhead. Besides, for simplicity, we
store data items and their metadata for concurrency con-
trol separately. The metadata is stored in memory and
indexed with a red-black tree. We further use a separate
thread to execute Alg. 6 to periodically update the optimal
interval space for different contention levels.

7 EVALUATION
Our experimental evaluation is conducted from two per-
spectives. First, we integrate BDTA and the state-of-the-art
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Fig. 11: Effect of adaptive timestamp interval selection.

concurrency control algorithms into a distributed transac-
tion testbed, called Deneva [22]. We compare them in the
same context and report our findings. Second, we conduct
experiments on Greenplum integrated with BDTA to verify
the necessity of introducing multi-level serializability.

7.1 Workloads and Experiment Setup
We use the following workloads to conduct the experiments:

YCSB [13] is a synthetic benchmark modeling large-scale
Internet applications. It uses a relation with 10 attributes,
in which one is taken as the primary key. Each record in
this relation occupies 1KB. The dataset is horizontally parti-
tioned, and each partition is assigned to a participant server.
Following Deneva [22], we set each partition to have 16
million records, indicating the data size of each participant
server is 16GB. By aiming to simulate different contention
levels, we follow Zipfian distribution to control the access
on the same records using a skew factor, denoted as theta.
When theta=0, we access each record in equal probability.
Besides, we vary the write ratio to control the ratio of
reads and writes by taking operations from transactions as
a whole, i.e., write ratio=50% means there are totally 50%
writes and 50% reads in transactions. By default, we set
write ratio=50% and theta=0.6.

TPC-C [46] is a popular OLTP benchmark simulating
a warehouse order processing application. It contains 9
relations. Each warehouse contains 100MB data size, and by
default, we set 32 warehouses per participant server. TPC-
C simulates 5 types of transactions, in which NewOrder,
Payment, and Delivery are read-write transactions, and
Stock-Level and Order-Status are read-only transactions (a
transaction with both reads and writes is referred to as a
read-write transaction). Following Deneva [22], we do not
include “think time” and user data errors that cause 1%
of NewOrder transactions to abort, aiming to test the peak
performance. Unless otherwise specified, we use the default
transaction mix of standard TPC-C in our experiments.

We conduct experiments except Section 7.5 using an in-
house cluster with 28 virtual nodes, each of which has 4
cores/8 threads and 32GB memory. Unless otherwise speci-
fied, we run the protocols on 16 nodes, each containing 1 co-
ordinator and 1 participant server. The RTT of the network
is around 0.3ms. For each experiment, we first run 30s for
warm-up and then collect results of the following 60s. We
evaluate the performance in terms of: (1) throughput, which
is the number of committed transactions; and (2) abort rate,
which is the percentage of aborted transactions against all
finished transactions.

7.2 Effect of Adaptive Timestamp Interval Selection
We first study the effectiveness of the adaptive timestamp
interval selection method by comparing BDTA and BDTA

TABLE 2: Comparison of the abort rate between BDTA and
BDTA-1

Low Contention High Contention
BDTA 0.80% 55.37%

BDTA-1 0.88% 77.33%

without adaptive timestamp interval (denoted as BDTA-
1) under sequential serializability. We set µ adaptively in
BDTA, and fix µ=1 in BDTA-1. We run them under the
low contention workload (theta=0.25) and high contention
workload (theta=0.75), respectively. We vary the cluster
from 8 to 28 nodes, and plot the results in Fig. 11. Fig. 11a
shows that under the low contention workload, BDTA
achieves comparable performance with BDTA-1, showing
the additional cost for running the auto-tuning algorithm
is negligible. We further study the benefit of adaptive
timestamp interval selection over the high contention work-
load, and plot the results in Fig. 11b. We can observe that
BDTA achieves higher throughput and better scalability
than BDTA-1 by up to 91.42%. The performance of BDTA
gains from the adaptive timestamp interval selection, which
helps most transactions get a proper timestamp interval,
thereby reducing the abort rate. As shown in Table 2,
although more transactions need to abort under the high
contention workload, the abort rate of BDTA is lower than
that of BDTA-1 by a factor of 21.96%.

In the following experiments, we adopt the adaptive
timestamp interval selection in BDTA by default.

7.3 Comparisons with Dynamic Ordering Algorithms

We compare BDTA with three recently proposed con-
currency control algorithms using the DTA scheme, i.e.,
MaaT [31], Sundial [55], and TCM [30]. Because MaaT
and Sundial only support serializability, we conduct our
experiments under serializability for fair comparisons.

We make the comparison under different contentions by
varying write ratio, and plot the results in Fig. 12a. As we
can see, for the read-only transactions (0% of read-write
transactions), BDTA outperforms the others by a factor of
38.66%. This is because, for read-only transactions, BDTA
eliminates the expensive 2PC cost, and hence reduces the co-
ordination overhead. Besides, when the percentage of read-
write transactions increases, all algorithms suffer higher
abort rates (shown in Fig. 12b), causing the performance
to drop. Due to the adaptive timestamp interval selection,
transactions are more likely to obtain proper timestamp
intervals and commit, and therefore, BDTA performs the
best with the lowest abort rate.

We evaluate the effect of theta, and plot the results in
Fig. 12c. BDTA outperforms MaaT, Sundial, and TCM by
up to 22.32% due to three reasons: First, MaaT and Sun-
dial are single-version based, while BDTA is multi-version
based, which allows reads do not block by the writes to
increase concurrency. Second, MaaT and Sundial have to
issue expensive 2PC for read-only transactions to commit
while BDTA does not. Third, MaaT, Sundial, and TCM
use a fixed space for timestamp adjustment, while BDTA
leverages the adaptive timestamp interval selection, which
further reduces abort rates and improves performance. The
time breakdown in Fig. 12d with theta=0.6 indicates that the
time spent on aborting transactions in MaaT, Sundial, and
TCM is much higher than that in BDTA.
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Fig. 12: Serializability with varying theta and write ratio.
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Fig. 13: Scalability under serializability.

We next investigate the scalability by varying the cluster
from 8 to 28 nodes, and plot the results in Fig. 13. (1) Scal-
ability over YCSB. We study the scalability over the medium
contention workload (theta=0.6), and plot the results in
Fig. 13a. We can observe that BDTA achieves up to 24.23%
performance gain and the best scalability when the number
of nodes varies. (2) Scalability over TPC-C. We further evalu-
ate the performance under the TPC-C workload, and report
the results in Fig. 13b. In this experiment, we customize
the TPC-C workload with 50% NewOrder transactions and
50% Payment transactions. BDTA still achieves up to 20.51%
higher throughput over the next-best algorithm. Again, the
scalability benefit of BDTA mainly comes from our special
design that adjusts timestamp bidirectionally, which reduces
the overhead of coordinators. As discussed in Section 4.5,
each transaction in BDTA locally adjusts timestamp inter-
vals in involved participant servers, and coordinators are
just responsible for collecting all local timestamp intervals.

7.4 Comparisons with Static Ordering Algorithms

We compare BDTA with three static ordering concurrency
control algorithms under sequential serializability: 2PL [4],
MVCC [5], and Silo [47]. For 2PL, we implement the No-
Wait variant to prevent deadlock. We implement MVCC by
ordering transactions based on their start timestamps. Silo is
an OCC-based algorithm and uses the serialization point to
order transactions, and we extend it into distributed setting
according to Google F1 [41]. We make local timestamps of
each process monotonically increase using HLC, which is
capable of preserving the program order.

We first study the effect of contentions by varying the
skew factor theta, and plot the results in Fig. 14. As we
can see, BDTA performs up to 56.58% better than the next-
best algorithm. As shown in Fig. 14a, when theta< 0.6, Silo
performs the worst because Silo introduces additional over-
head in the validation phase, where a transaction reads data
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Fig. 15: Scalability under sequential serializability.

items in its read set again to examine whether they remain
unchanged. When theta reaches 0.6, the cost of aborting
transactions increases and becomes the bottleneck for 2PL,
MVCC, and Silo, which can be verified in Fig. 14b. Because
BDTA orders transactions dynamically, BDTA shows a bet-
ter tolerance on contentions, leading to a higher throughput.

We then perform the scalability evaluation under se-
quential serializability. As observed in Fig. 15, BDTA
achieves up to 1.19× higher throughput than the second-
best algorithm under the medium contention workload
(theta=0.6) and high contention workload (theta=0.75). The
performance of BDTA is mainly due to the bidirectional
timestamp adjustment mechanism, ensuring the lowest
abort rate, as verified in Fig. 15c and 15d.
7.5 Comparisons of Multi-level Serializability
In this section, we conduct experiments on an in-house
cluster with 3 high-performance nodes running CentOS 7.4.
Each node has two Intel(R) Xeon(R) Platinum 8276 CPUs
(28 cores × 2 HT), 8 × 128GB DRAM, and 3TB NVMe SSDs.
We deploy Greenplum with 2 coordinators and 3 participant
servers in this cluster. Each node hosts at most 1 coordinator
and 1 participant server. By default, the Round-Trip Time
(RTT), an indicator to measure the network latency, in the
cluster is 0.03 ms. To better evaluate the performance of
different serializability levels, we set RTT=1.5ms to simulate
the deployment over a WAN network (e.g., a cross datacen-
ter cluster). Note that setting RTT=1.5ms to simulate a cross
datacenter deployment is reasonable. For example, the RTT
from New York to Dallas is 40ms [35]. Thus, we use RTT
= 0.03ms, and RTT=1.5ms to simulate the network latency
over a LAN network, and WAN network, respectively.

We first study the effectiveness of integrating BDTA into
Greenplum (denoted as Greenplum+BDTA), and report the
comparison between Greenplum+BDTA and Greenplum in
Fig. 16. Note that Greenplum+BDTA is set under the se-
quential serializability level. Since Greenplum only supports
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Fig. 16: Effect of integrating BDTA into Greenplum.

the read committed and repeatable read isolation level, we
set Greenplum under the read committed level to obtain the
peak performance. As we can see, even if Greenplum is set
under the read committed level, Greenplum+BDTA still out-
performs Greenplum by a factor of up to 2.01× and 1.95× on
YCSB and TPC-C workload, respectively. The reason is two-
fold. On the one hand, Greenplum+BDTA can tolerate more
transaction concurrency, which leads to better performance.
As mentioned, BDTA is employed in Greenplum+BDTA
which reduces the abort rate and improves performance. On
the other hand, Greenplum coordinates transactions with a
costly distributed deadlock detection component, which is
eliminated in Greenplum+BDTA.

We then report the experimental results of executing
Greenplum+BDTA under different serializability levels over
LAN in Fig. 17a, 17b. We observe that the performance
under strict serializability (labeled as STRICT SER), se-
quential serializability (labeled as SEQ SER), and serializ-
ability (labeled as SER) almost coincide. This is because, in
a low latency network environment, like LAN, the effect of
requesting timestamps from timestamp oracle service on the
overall performance is negligible. The main cost comes from
doing concurrency control, which is roughly the same under
strict serializability and sequential serializability.

We finally report the experimental results over a simu-
lated WAN network in Fig. 17c, 17d. We find that sequential
serializability and serializability almost perform the same,
and their throughput is up to 4.53× higher than that of strict
serializability. The reason is that, in a high latency network
environment, like WAN, the cost of requesting timestamps
is comparable to that of doing concurrency control, and
probably becomes a dominant factor to the overall perfor-
mance (could be verified in Fig. 17d). Besides, by varying
the number of client connections from 8 to 128, sequential
serializability and serializability take an increasingly sig-
nificant benefit against strict serializability. Yet, by adding
more client connections, the contentions among transactions
become the bottleneck and cause the performance to drop.

7.6 Summary
We summarize the major experimental findings below:
• We show the efficiency and effectiveness of the adaptive

timestamp interval selection method, which reduces the
abort rate by up to 21.96% and improves the throughput
by up to 91.42% (Section 7.2).

• We confirm that BDTA outperforms the state-of-the-art
concurrency control algorithms, including dynamic or-
dering and static ordering algorithms (Section 7.3 and
Section 7.4).

• We recommend using strict serializability in the low la-
tency network, e.g., LAN, and sequential serializability in
the high latency network, e.g., WAN (Section 7.5).
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Fig. 17: Multi-level serializability on Greenplum+BDTA.

8 RELATED WORK

Our study relates to formalizing consistency and isolation
levels, as well as distributed concurrency control algorithms.

In ACID databases, isolation levels are typically defined
by disallowing certain kinds of data anomalies. The AN-
SI/ISO SQL-92 specifies four data anomalies (e.g., dirty
write/read) and defines four isolation levels accordingly
[51]. By arguing that the definitions in SQL-92 lack math-
ematical formalization and could incur ambiguous inter-
pretations, a few works make formal re-definitions of data
anomalies [1], [3], [15], [19], [43]. Much effort has been de-
voted to the identification of new data anomalies, including
skewed read/write [3], aborted read [53], intermediate read
[53], etc. There are quite a few works to model data consis-
tency from different perspectives, e.g., result visibility [43],
state matrix [15], dependency graph [1], [2], and abstract
execution [11]. Recently, there is an increasing interest in
imposing consistency models [11], [24], [27], [28], [49] on
isolation levels. Quite a few works [12], [18], [48] impose ad-
ditional constraints like the causal-related order on snapshot
isolation [3]. Salt [52] imposes the eventual consistency [11]
on ACID transactions to provide BASE transactions. To be
more related, strict serializability [40] imposes the real-time
order on serializability. Strong session serializability [16] im-
poses the program order on serializability. Lynx [56] studies
serializability with the read-your-writes order. These works
impose partial orders on serializability in a case-by-case
manner. We model multi-level serializability to provide a
systematic analysis of consistency levels over serializability.
It is worth mentioning that strong session serializability [16]
and Lynx [56] can be reduced to sequential serializability.

Distributed concurrency control algorithms are typically
divided into two categories: (1) static ordering algorithms
and (2) dynamic ordering algorithms. The first category
determines the order of transactions statically. T/O [4] or-
ders transactions based on their start timestamps. OCC [26]
and its variants like Silo [47] determine the order based
on either the validation point or the serialization point.
2PL [4], [19] orders transactions by the first granted lock
on conflict data items. Calvin [45] uses a deterministic
method to order transactions before execution. Imposing
T/O over MVCC [39] can potentially support sequential
serializability by the monotonic increasing local timestamp
and strict serializability by the timestamp oracle [38]. Yet,
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the static ordering could cause a high abort rate due to
their strict order requirements, which is verified in our
experiments. On the contrary, the second category deter-
mines the order of transactions dynamically. Similar to
BDTA, they determine the order by adjusting the timestamp
intervals of transactions. Boksenbaum et al. are the first
to use DTA in distributed concurrency control [9]. MaaT
[31] and Sundial [55] are single-version based, and employ
logical timestamps to do the adjustment. TCM [30] inte-
grates DTA into the multi-version 2PL protocol, which is
mainly designed for centralized databases. TCM requires all
concurrent transactions to shrink their timestamp intervals
upon a conflict, which could incur unnecessary adjustment
overhead for aborted transactions. BDTA eliminates this
overhead by only adjusting other transactions’ timestamp
intervals during the validation. BDTA is different from the
other algorithms. First, BDTA adjusts timestamp intervals
to preserve required orders in multi-level serializability.
Second, BDTA adopts the adaptive timestamp interval se-
lection, leading to a lower transaction abort rate.

9 CONCLUSIONS
In this paper, we study serializability from different consis-
tency perspectives and formalize multi-level serializability.
To support multi-level serializability, we propose a novel
concurrency control algorithm called BDTA. BDTA can dy-
namically order serializable transactions and preserve par-
tial orders among transactions required in the consistency
models. We integrate BDTA into Greenplum, and release
the implementation as open source. We conduct extensive
experiments to show the necessity of introducing multi-level
serializability and the performance gain of BDTA compared
with state-of-the-art concurrency control algorithms.
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